Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Quartz Defects, Optically Stimulated Luminescence and Thermoluminescence

  • Marco Martini
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_68-6


Point defects in solids. Any break in the regular pattern of a crystal, due to absence of an atom (vacancy) or to an atom of the crystal in a position out of the regular lattice (interstitial) or an extra atom of different species (impurity).

Luminescence. Energy emission in the form of light as a consequence of absorption of energy of various types: As an example radioluminescence occurs when a crystal emits light after absorption of ionizing radiation. As a general rule luminescence involves electrons that increase their energy level in the absorption (excitation) and return to the original level causing light emission (de-excitation).

Delayed luminescence is a particular type of luminescence occurring when on average there is light emission long after the energy absorption. The most frequently reported delayed luminescence is phosphorescence, caused by transition rules that make scarcely probable the radiative recombination.

Thermoluminescence (TL)is a kind of delayed...


Electron Spin Resonance Electron Spin Resonance Signal Optically Stimulate Luminescence Glow Peak Luminescence Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bossoli, R. B., Jani, M. G., and Halliburton, L. E., 1982. Radiation-induced E” centers in crystalline SiO2. Solid State Communications, 44, 213–217.CrossRefGoogle Scholar
  2. Chen, G., Li, S. H., and Murray, A. S., 2001. Effect of heating on the quartz dose–response curve. Radiation Measurements, 33, 59–63.CrossRefGoogle Scholar
  3. Feigl, F. J., Fowler, W. B., and Yip, K. L., 1974. Oxygen vacancy model for E’1 center in SiO2. Solid State Communications, 14, 225–229.CrossRefGoogle Scholar
  4. Fowler, W. B., Rudra, J. K., Edwards, A. H., and Feigl, F. J., 1988. Theory of oxygen vacancy defects in silicon dioxide. In Devine, R. A. B. (ed.), The Physics and Technology of Amorphous SiO 2. New York: Plenum Press, pp. 107–112.CrossRefGoogle Scholar
  5. Halliburton, L. E., Koumvakalis, N., Markes, M. E., and Martin, J. J., 1981. Radiation effects in crystalline SiO2: the role of aluminum. Journal of Applied Physics, 52, 3565–3574.CrossRefGoogle Scholar
  6. Hashimoto, T., 2008. An overview of red-thermoluminescence (RTL) studies on heated quartz and RTL application to dosimetry and dating. Geochronometria, 30, 9–16.CrossRefGoogle Scholar
  7. Huntley, D. J., Short, M. A., and Dunphy, K., 1996. Deep traps in quartz and their use for optical dating. Canadian Journal of Physics, 74, 81–91.CrossRefGoogle Scholar
  8. Itoh, N., Stoneham, D., and Stoneham, A. M., 2002. Ionic and electronic processes in quartz: mechanisms of thermoluminescence and optically stimulated luminescence. Journal of Applied Physics, 92, 5036–5044.CrossRefGoogle Scholar
  9. Jani, M. G., Bossoli, R. B., and Halliburton, L. E., 1983. Further characterization of the E1’ center in crystalline SiO2. Physical Review B, 27, 2285–2293.CrossRefGoogle Scholar
  10. Kaylor, R. M., Feathers, J., Hornyak, W. F., and Franklin, A. D., 1995. Optically stimulated luminescence in Kalahari quartz: bleaching of the 325 °C peak as the source of the luminescence. Journal of Luminescence, 65, 1–6.CrossRefGoogle Scholar
  11. Koul, D. K., and Chougaonkar, M. P., 2007. The pre-dose phenomenon in the OSL signal of quartz. Radiation Measurements, 42, 1265–1272.CrossRefGoogle Scholar
  12. Lai, Z. P., Brückner, H., Fülling, A., and Zöller, L., 2008. Effects of thermal treatment on the growth curve shape for OSL of quartz extracted from Chinese loess. Radiation Measurements, 43, 763–766.CrossRefGoogle Scholar
  13. Lieb, K. P., and Keinonen, J., 2006. Luminescence of ion-irradiated alpha quartz. Contemporary Physics, 47, 305–331.CrossRefGoogle Scholar
  14. Martini, M., and Galli, A., 2007. Ionic mechanisms in the optically stimulated luminescence of quartz. Physica Status Solidi: Current Topics in Solid State Physics, 4, 1000–1003.CrossRefGoogle Scholar
  15. Martini, M., and Meinardi, F., 1997. Thermally stimulated luminescence: new perspectives in the study of defects in solids. La Rivista del Nuovo Cimento, Serie 4, 20(8).Google Scholar
  16. Martini, M., Paleari, A., Spinolo, G., and Vedda, A., 1995. Role of [AlO4]0 centers in the 380-nm thermoluminescence of quartz. Physical Review B, 52, 138–142.CrossRefGoogle Scholar
  17. Martini, M., Fasoli, M., and Galli, A., 2009. Quartz OSL emission spectra and role of [AlO4]° recombination centres. Radiation Measurements, 44, 458–461.CrossRefGoogle Scholar
  18. Martini, M., Fasoli, M., Galli, A., Villa, I., and Guibert, P., 2012a. Radioluminescence of synthetic quartz related to alkali ions. Journal of Luminescence, 132, 1030–1036.CrossRefGoogle Scholar
  19. Martini, M., Fasoli, M., Villa, I., and Guibert, P., 2012b. Radioluminescence of synthetic and natural quartz. Radiation Measurements, 47, 846–850.CrossRefGoogle Scholar
  20. McKeever, S. W. S., 1985. Thermoluminescence of Solids. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Poolton, N. R. J., Smith, G. M., Riedi, P. C., Bulur, E., Bøtter-Jensen, L., Murray, A. S., and Adrian, M., 2000. Luminescence sensitivity changes in natural quartz induced by high temperature annealing: a high frequency EPR and OSL study. Journal of Physics D, 33, 1007–1017.CrossRefGoogle Scholar
  22. Preusser, F., Chithambo, M. L., Götte, T., Martini, M., Ramseyer, K., Sendezera, E. J., Susino, G. J., and Wintle, A. G., 2009. Quartz as a natural luminescence dosimeter. Earth Science Reviews, 97, 184–214.CrossRefGoogle Scholar
  23. Rendell, H. M., Townsend, P. D., Wood, R. A., and Luff, B. J., 1994. Thermal treatments and emission-spectra of TL from quartz. Radiation Measurements, 23, 441–449.CrossRefGoogle Scholar
  24. Rink, W. J., Rendell, H. M., Marseglia, E. A., Luff, B. J., and Townsend, P. D., 1993. Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz. Physics and Chemistry of Minerals, 20, 353–361.CrossRefGoogle Scholar
  25. Rudra, J. K., and Fowler, W. B., 1987. Oxygen vacancy and the E1’ center in crystalline SiO2. Physical Review B, 35, 8223–8230.CrossRefGoogle Scholar
  26. Schilles, T., Poolton, N. R. J., Bulur, E., Bøtter-Jensen, L., Murray, A. S., Smith, G. M., Riedi, P. C., and Wagner, G. A., 2001. A multi-spectroscopic study of luminescence sensitivity changes in natural quartz induced by high-temperature annealing. Journal of Physics D, 34, 722–731.CrossRefGoogle Scholar
  27. Shimizu, N., Mitamura, N., Takeuchi, A., and Hashimoto, T., 2006. Dependence of radioluminescence on TL-properties in natural quartz. Radiation Measurements, 41, 831–835.CrossRefGoogle Scholar
  28. Stevens Kalceff, M. A., and Phillips, M. R., 1995. Cathodoluminescence microcharacterization of the defect structure of quartz. Physical Review B, 52, 3122–3134.CrossRefGoogle Scholar
  29. Stoneham, D., and Stokes, S., 1991. An investigation of the relationship between the 110 °C TL peak and optically stimulated luminescence in sedimentary quartz. Nuclear Tracks and Radiation Measurements, 18, 119–123.CrossRefGoogle Scholar
  30. Weil, J. A., 2000. A demi-century of magnetic defects in α-quartz. In Pacchioni, G., Skuja, L., and Griscom, D. L. (eds.), Defects in SiO 2 and Related Dielectrics: Science and Technology. Amsterdam: Kluwer, pp. 197–212.CrossRefGoogle Scholar
  31. Westway, K. E., 2009. The red, white and blue of quartz luminescence: a comparison of De values derived for sediments from Australia and Indonesia using thermoluminescence and optically stimulated luminescence emissions. Radiation Measurements, 44, 462–466.CrossRefGoogle Scholar
  32. Wintle, A. G., and Murray, A. S., 1997. The relationship between quartz thermoluminescence, photo-transferred thermoluminescence and optically stimulated luminescence. Radiation Measurements, 27, 611–624.CrossRefGoogle Scholar
  33. Woda, C., Schilles, T., Rieser, U., Mangini, A., and Wagner, G. A., 2002. Point defects and the blue emission in fired quartz at high dose: a comparative luminescence and EPR study. Radiation Protection Dosimetry, 100, 261–264.CrossRefGoogle Scholar
  34. Yang, X. H., and McKeever, S. W. S., 1990. Point-defects and the predose effect in quartz. Radiation Protection Dosimetry, 33, 27–30.Google Scholar
  35. Zimmerman, J., 1971. The radiation-induced increase of the 100 °C thermoluminescence sensitivity of fired quartz. Journal of Physics C: Solid State Physics, 4, 3265–3276.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienza dei Materiali and Sezione INFNUniversita’ degli Studi di Milano BicoccaMilanItaly