Skip to main content

Clays and Glauconites (K–Ar/Ar–Ar)

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Introduction

Both conventional K–Ar and 40Ar/39Ar dating methods can be applied to clay minerals. Clay minerals are sheet silicates characterized by their small grain size (<2 μm), thus requiring specialized separation and analytical methods for isotopic dating. Detailed accounts of the conventional K–Ar and 40Ar/39Ar dating technique have been described by Dalrymple and Lanphere (1969), Faure (1986), Dickin (1995), McDougall and Harrison (1999), and Kelley (2002). The ages of clay minerals can be determined by measuring the amount of the argon isotope 40Ar relative to the potassium content. 40Ar is produced by the radioactive decay of the potassium isotope 40K. Minerals generally contain negligible amounts of argon when they are formed, although small amounts of atmospheric argon may adhere to samples, which can be corrected for by using the known atmospheric 40Ar/39Ar ratio of 295.5 (Steiger and Jäger 1977). Thus, by measuring the ratio of 40Ar to 40K, and knowing the decay rate of 40...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Armstrong, R. L., 1991. A brief history of geochronometry and radiogenic isotopic studies. In Haeman, L., and Ludden, J. N. (eds.), Applications of Radiogenic Isotope Systems to Problems in Geology. Toronto: Mineral Association Canada, Vol. 19, pp. 1–26.

    Google Scholar 

  • Aronson, J. L., and Hower, L., 1976. Mechanism of burial metamorphism of argillaceous sediments. 2. Radiogenic argon evidence. Geological Society of America Bulletin, 87, 738–744.

    Google Scholar 

  • Cassignol, C., and Gillot, P. Y., 1982. Range and effectiveness of unspiked potassium-argon dating: experimental ground-work and applications. In Odin, G. S. (ed.), Numerical Dating in Stratigraphy. Chichester, Part 1: Wiley, pp. 159–179.

    Google Scholar 

  • Clauer, N., and Chaudhuri, S., 1995. Clays and Crustal Cycles. Heidelberg/New York: Springer. 359 p.

    Google Scholar 

  • Clauer, N., Środoń, J., Francú, J., and Šucha, V., 1997. K-Ar dating of illite fundamental particles separated from illite/smectite. Clay Minerals, 32, 181–196.

    Article  Google Scholar 

  • Clauer, N., Huggett, J. M., and Hillier, S., 2005. How reliable is the K-Ar glauconite chronometer? A case study of Eocene sediments from the Isle of Wight. Clay Minerals, 40, 167–176.

    Article  Google Scholar 

  • Clauer, N., Jourdan, F., and Zwingmann, H., 2011. Dating petroleum emplacement by illite 40Ar/39Ar laser stepwise heating: a comment. American Association of Petroleum Geologists Bulletin, 95(12), 2107–2111, doi:10.1306/03241110115.

    Article  Google Scholar 

  • Clauer, N., Zwingmann, H., Liewig, N., and Wendling, R., 2012. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals. Earth Science Reviews, 115, 76–96.

    Article  Google Scholar 

  • Crank, J., 1975. The Mathematics of Diffusion, 2nd edn. Oxford: Oxford University Press.

    Google Scholar 

  • Dalrymple, G. B., 1991. The Age of the Earth. Stanford: Stanford University Press.

    Google Scholar 

  • Dalrymple, G. B., and Lanphere, M. A., 1969. Potassium-Argon Dating. San Francisco: W.H. Freeman. 258 p.

    Google Scholar 

  • Dickin, A. P., 1995. Radiogenic Isotope Geology. Cambridge: Cambridge University Press. 490 p.

    Google Scholar 

  • Dong, H., Hall, C. M., Peacor, D. R., and Halliday, A. N., 1995. Mechanisms of argon retention in layers revealed by laser 40Ar-39Ar dating. Science, 267, 355–359.

    Article  Google Scholar 

  • Eberl, D. D., and Środoń, J., 1988. Ostwald ripening and interparticle-diffraction effects for illite crystals. American Mineralogist, 73, 1335–1345.

    Google Scholar 

  • Eberl, D. D., Środoń, J., Kralik, M., Taylor, B. E., and Peterman, Z. E., 1990. Ostwald ripening of clays and metamorphic minerals. Science, 248, 474–477.

    Article  Google Scholar 

  • Farley, K. A., Hurowitz, J. A., Asimov, P. D., Jacobson, N. S., and Cartwright, J. A., 2013a. A double-spike method for K–Ar measurement: a technique for high precision in situ dating on Mars and other planetary surfaces. Geochimica et Cosmochimica Acta, 110, 1–12.

    Article  Google Scholar 

  • Farley, K. A., Malespin, C., Mahaffy, P., Grotzinger, J. P., Vasconcelos, P. M., Milliken, R. E., Malin, M., Edgett, K. S., Pavlov, A., Hurowitz, J. A., Grant, J. A., Miller, H. B., Arvidson, R., Beegle, L., Calef, F., Conrad, P. G., Dietrich, W. E., Eigenbrode, J., Gellert, R., Gupta, S., Hamilton, V., Hassler, D. M., Lewis, K. W., McLennan, S. M., Ming, D., Navarro-González, R., Schwenzer, S. P., Steele, A., Stolper, E. M., Sumner, Y. D., Vaniman, D., Vasavada, A., Williford, K., Wimmer-Schweingruber, R. F., and 21 the MSL Science Team, 2013b. In situ radiometric and exposure age dating of the martian surface. Science, 343(6169), 1247166, doi:10.1126/science.1247166.

    Article  Google Scholar 

  • Faure, G., 1986. Principles of Isotope Geology. New York: Wiley. 589 p.

    Google Scholar 

  • Faure, G., and Mensing, T. M., 2005. Isotopes – Principles and Applications, 3rd edn. Hoboken, NJ: Wiley. 897p.

    Google Scholar 

  • Foland, K. A., Hubacher, F. A., and Arehartet, G. B., 1992. 40Ar/39Ar dating of very fine-grained samples: an encapsulated-vial procedure to overcome the problem of 39Ar recoil loss. Chemical Geology (Isotope Geoscience Section), 102, 269–276.

    Google Scholar 

  • Frey, M., and Robinson, D., 1999. Low-Grade Metamorphism. Oxford: Blackwell Science. 313 p.

    Google Scholar 

  • Girard, J. P., Savin, S. M., and Aronson, J., 1989. Diagenesis of the lower cretaceous arkoses of the Angola margin; petrologic, K/Ar dating and 18O/16O evidence. Journal of Sedimentary Research, 59(4), 519–538.

    Google Scholar 

  • Gradstein, F., Ogg, J., Schmitz, M. D., and Ogg, G., 2012. The Geologic Time Scale 2012. Oxford: Elsevier.

    Google Scholar 

  • Haines, S. H., and van der Pluijm, B. A., 2008. Clay quantification and Ar-Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. Journal of Structural Geology, 30, 525–538.

    Article  Google Scholar 

  • Hamilton, P. J., Kelley, S., and Fallick, A. E., 1989. K-Ar dating of illite in hydrocarbon reservoirs. Clays Clay Minerals, 24, 215–231.

    Article  Google Scholar 

  • Hamilton, P. J., Giles, M. R., and Ainsworth, P., 1992. K-Ar dating of illites Brent Group reservoirs: a regional perspective. In Morton, A. C., Haszeldine, R. S., Giles, M. R., and Brown, S. (eds.), Geology of the Brent Group. London: Geological Society of London, Vol. 61, pp. 377–400. Special Publications.

    Google Scholar 

  • Harrison, T. M., Celerier, J., Amos, B., Aikman, A. B., Hermann, J., and Heizler, M. T., 2009. Diffusion of Ar in muscovite. Geochimica et Cosmochimica Acta, 73, 1039–105, doi:10.1016/j.gca.2008.09.038.

    Article  Google Scholar 

  • Hashizume, H., 2012. Role of clay minerals in chemical evolution and the origins of life. In: Valakova, M., and Martynkova, G. S. (eds.), Clay Minerals in Nature – Their Characterization, Modification and Application, ISBN 978-953-51-0738-5, http://dx.doi.org/10.5772/50172.

    Google Scholar 

  • Hunziker, J. C., Frey, M., Clauer, N., Dallmeyer, R., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiler, P., and Schwander, H., 1986. The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology, 92, 157–180.

    Article  Google Scholar 

  • Huon, S., Cornee, J. J., Pique, A., Rais, N., Clauer, N., Liewig, N., and Zayane, R., 1993. Mise en évidence au Maroc d’événements thermiques d’âge triascico-liasique à l’ouverture de l’Atlantique. Bulletin de la Societe Geologique de France, 164, 165–176.

    Google Scholar 

  • Kapusta, Y., Steinitz, G., Akkerman, A., Sandler, A., Kotlarsky, P., and Nägler, A., 1997. Monitoring the deficit of 39Ar in irradiated clay fractions and glauconites: modeling and analytical procedure. Geochimica et Cosmochimica Acta, 61, 4671–4678.

    Article  Google Scholar 

  • Kelley, S., 2002. K-Ar and Ar-Ar dating. Reviews in Mineralogy and Geochemistry, 47(1), 785–818.

    Article  Google Scholar 

  • Liewig, N., Clauer, N., and Sommer, F., 1987. Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil reservoirs, North Sea. American Association of Petroleum Geologists Bulletin, 71, 1467–1474.

    Google Scholar 

  • Mark, D. F., Stuart, F. M., and de Podesta, M., 2011. New high-precision measurements of the isotopic composition of atmospheric argon. Geochimica et Cosmochimica Acta, 75, 7494–7501.

    Article  Google Scholar 

  • McDougall, I., and Harrison, T. M., 1999. Geochronology and Thermochronology by the 40 Ar/ 39 Ar Method, 2nd edn. Oxford: Oxford University Press.

    Google Scholar 

  • Meunier, A., 2005. Clays. Berlin: Springer. 472 p.

    Google Scholar 

  • Meunier, A., and Velde, B., 2004. Illite: Origins, Evolution and Metamorphism. Berlin: Springer. 286 p.

    Book  Google Scholar 

  • Meunier, A., Velde, B., and Zalba, P., 2004. Illite K–Ar dating and crystal growth processes in diagenetic environments: a critical review. Terra Nova, 16, 296–304.

    Article  Google Scholar 

  • Nadeau, P. H., 2011. Earth’s energy “Golden Zone”: A synthesis from mineralogical research. Clay Minerals, 46, 1–24.

    Article  Google Scholar 

  • Odin, G. S., 1975. De Glauconarium Constitutione, Aetateque: Ph.D. thesis, University of Paris-Sud, 280 p.

    Google Scholar 

  • Odin, G. S., et al., 1982. Interlaboratory standards for dating purposes. In Odin, G. S. (ed.), Numerical Dating in Stratigraphy. Chichester, Part 1: Wiley, pp. 123–148.

    Google Scholar 

  • Onstott, T. C., Miller, M. L., Ewing, R. C., Arnold, G. W., and Walsh, D. S., 1995. Recoil refinements: implications for the 40Ar/39Ar dating technique. Geochimica et Cosmochimica Acta, 59, 1821–1834.

    Article  Google Scholar 

  • Pevear, D. R., 1999. Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, 96, 3440–3446, doi:10.1073/pnas.96.7.3440.

    Article  Google Scholar 

  • Renne, P. R., Sharp, W. D., Deino, A. L., Orsi, G., and Civetta, L., 1997. 40Ar/39Ar dating into the historical realm: calibration against Pliny the Younger. Science, 277, 1279–1280.

    Article  Google Scholar 

  • Renne, P. R., Knight, K. B., Nomade, S., Leung, K., and Lou, T., 2005. Application of deuteron-deuteron (D-D) fusion neutrons to 40Ar/39Ar geochronology. Applied Radiation Isotopes, 62, 25–32, doi:10.1016/j.apradiso.2004.06.004.

    Article  Google Scholar 

  • Selby, D., 2009. U-Pb zircon geochronology of the Aptian/Albian boundary implies that the GL-O international glauconite standard is anomalously young. Cretaceous Research, 30, 1263–1267.

    Article  Google Scholar 

  • Sherlock, S. C., Kelley, S. P., Zalasiewicz, J., Schofield, D., Evans, J., Merriman, R. J., and Kemp, S. J., 2003. Absolute dating of low-temperature deformation: strain-fringe dating by Ar-Ar laser microprobe. Geology, 31, 219–222.

    Article  Google Scholar 

  • Smith, P. E., Evensen, N. M., and York, D., 1993. First successful 40Ar/39Ar dating of glauconites: argon recoil in single grain cryptocrystalline material. Geology, 21, 41–44.

    Article  Google Scholar 

  • Smith, P. E., Evensen, N. M., York, D., and Odin, G., 1998. Single-grain 40Ar/39Ar ages of glauconies: implications for the geologic time scale and global sea level variations. Science, 279, 1517–1519, doi:10.1126/science.279.5356.1517.

    Article  Google Scholar 

  • Solum, J., van der Pluijm, B., and Peacor, D. R., 2005. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab fault zone, Utah. Journal of Structural Geology, 27, 1563–1576.

    Article  Google Scholar 

  • Srodón, J., and Eberl, D. D., 1984. Illite. In Bailey, S. W. (ed.), Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, Vol. 13, pp. 495–544.

    Google Scholar 

  • Steiger, R. H., and Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.

    Article  Google Scholar 

  • Sudo, M., Tagami, T., Sato, K., Hasebe, N., and Nishimura, S., 1996. Calibration of a new Ar analytical system for the K-Ar dating method and analytical results of K-Ar age known samples. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 58, 21–40.

    Google Scholar 

  • Turner, G., and Cadogan, P. H., 1974. Possible effects of 39Ar recoil in 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 5, 1601–1615.

    Google Scholar 

  • van der Pluijm, B. A., Hall, C. M., Vrolijk, P. J., Pevear, D. R., and Covey, M. C., 2001. The dating of shallow faults in the Earth’s crust. Nature, 412, 172–175.

    Article  Google Scholar 

  • van der Pluijm, B. A., Vrolijk, P. J., Pevear, D. R., Hall, C. M., and Solum, J., 2006. Fault dating in the Canadian rocky mountains: evidence for late Cretaceous and early Eocene orogenic pulses. Geology, 34, 837–840, doi:10.1130/G22610.1.

    Article  Google Scholar 

  • van Laningham, S., and Mark, D. F., 2011. Step heating of 40Ar/39Ar standard mineral mixtures: investigation of a fine-grained bulk sediment provenance tool. Geochimica et Cosmochimica Acta, 75, 2324–2335.

    Article  Google Scholar 

  • Velde, B., 1992. Introduction to Clay Minerals: Chemistry, Origins, Uses, and Environmental Significance. New York: Chapman & Hall, p. 198.

    Book  Google Scholar 

  • Velde, B., 2004. Green clay minerals. In: Holland, H. D., and Turekian, K. K. (eds.), Treatise on Geochemistry 7. Sediments, Diagnosis, and Sedimentary Rocks. Amsterdam: Elsevier, Vol. 7, pp. 309–24.

    Google Scholar 

  • Villa, I. M., 1997. Direct determination of 39Ar recoil distance. Geochimica et Cosmochimica Acta, 61, 689–691.

    Article  Google Scholar 

  • Viola, G., Zwingmann, H., Mattila, J., and Käpyaho, A., 2013. K/Ar illite constraints on the Proterozoic formation and reactivation history of a brittle fault in Fennoscandia. Terra Nova, 25(3), 236–244, doi:10.1111/ter.12031.

    Article  Google Scholar 

  • Vrolijk, P., and van der Pluijm, B. A., 1999. Clay gouge. Journal of Structural Geology, 21, 1039–1048.

    Article  Google Scholar 

  • Watson, E., and Baxter, E. F., 2007. Diffusion in solid-Earth systems. Earth and Planetary Science Letters, 253, 307–327.

    Article  Google Scholar 

  • Wijbrans, J. R., and McDougall, I., 1986. 40Ar/39Ar dating of white micas from an alpine high-pressure metamorphic belt on Naxos. Contributions to Mineralogy and Petrology, 93, 187–194.

    Article  Google Scholar 

  • Wilkinson, M., and Haszeldine, S., 2002. Fibrous illite in oilfield sandstones – a nucleation kinetic theory of growth. Terra Nova, 14(1), 56–60.

    Article  Google Scholar 

  • Worden, R., and Morad, S., 2003. Clay Mineral Cements in Sandstones. Oxford: Blackwell. Special Publication Number 34 of the International Association of Sedimentologists. 509 p.

    Google Scholar 

  • Yun, J. B., Shi, H. S., Zhu, J. Z., Zhao, L. H., and Qiu, H. N., 2010. Dating petroleum emplacement by illite 40Ar/39Ar laser stepwise heating. American Association of Petroleum Geologists Bulletin, 94, 759–771.

    Article  Google Scholar 

  • Zwingmann, H., Offler, R., Wilson, T., and Cox, S., 2004. K-Ar dating of fault gouge in the northern Sydney basin, Australia – implications for the breakup of Gondwana. Journal of Structural Geology, 26, 2285–2295.

    Article  Google Scholar 

  • Zwingmann, H., Mancktelow, N., Antognini, M., and Lucchini, R., 2010. Dating of shallow faults – new constraints from the AlpTransit tunnel site (Switzerland). Geology, 38, 487–490, doi:10.1130/G30785.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Zwingmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Her Majesty the Queen in Right of Australia

About this entry

Cite this entry

Zwingmann, H. (2014). Clays and Glauconites (K–Ar/Ar–Ar). In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics