Skip to main content

Rhenium–Osmium Geochronology: Sulfides, Shales, Oils, and Mantle

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Synonyms

Re–Os geochronology; 187Re–187Os geochronology

Definition

Rhenium–osmium geochronology is based on radioactive decay of 187Re to 187Os with a half-life of 41.6 b.y. – about 10 times the age of the earth. Both Re and Os are siderophile-chalcophile elements, that is, they are both strongly partitioned into metals or sulfides rather than silicates. This distinguishes them from other widely used geochronometers whose parent-daughter elements reside in silicates. Re–Os geochronology underpins dating of materials from meteorites, the mantle, and metallic ore deposits. Furthermore, both Re and Os are redox-sensitive metals, soluble when oxidized, and fixed by reduction. Thus, both are mobile in Earth’s presently oxidized surface environments but are concentrated in sulfides and organic matter in anoxic-euxinic sediments. This is the basis for Re–Os dating of the depositional age of organic-rich sedimentary rocks and provides a temporally constrained record of changing redox...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Aleinikoff, J. N., Creaser, R. A., Lowers, H. A., Magee, C. W., Jr., and Grauch, R. I., 2012. Multiple age components in individual molybdenite grains. Chemical Geology, 300–301, 55–60.

    Google Scholar 

  • Arne, D., Bierlein, F., Morgan, J. W., and Stein, H. J., 2001. Re–Os dating of sulfides associated with gold mineralization in central Victoria, Australia. Economic Geology, 96, 1455–1459.

    Google Scholar 

  • Bierlein, F. P., Stein, H. J., Coira, B., and Reynolds, P., 2006. Timing of gold and crustal evolution of the Paleozoic south central Andes, NW Argentina – implications for the endowment of orogenic belts. Earth and Planetary Science Letters, 245, 702–721.

    Google Scholar 

  • Bingen, B., and Stein, H., 2003. Molybdenite Re–Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth and Planetary Science Letters, 208, 181–195.

    Google Scholar 

  • Birck, J.-L., Roy, B. M., and Capmas, F., 1997. Re–Os isotopic measurements at the femtomole level in natural samples. Geostandards Newsletter, 20, 19–27.

    Google Scholar 

  • Brandon, A. D., Puchtel, I. S., Walker, R. J., Day, J. M. D., Irving, A. J., and Taylor, L. A., 2012. Evolution of the Martian mantle inferred from the 187Re–187Os isotope and highly siderophile element abundances systematics of shergottite meteorites. Geochimica et Cosmochimica Acta, 76, 206–235.

    Google Scholar 

  • Brauns, C. M., 2001. A rapid, low-blank technique for the extraction of osmium from geological samples. Chemical Geology, 176, 379–384.

    Google Scholar 

  • Cohen, A. S., and Waters, F. G., 1996. Separation of osmium from geological materials solvent extraction for analysis by TIMS. Analytica Chimica Acta, 332, 269–275.

    Google Scholar 

  • Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J., 1991. Negative thermal ionization mass spectrometry of osmium, rhenium and iridium. Geochimica et Cosmochimica Acta, 55, 397–401.

    Google Scholar 

  • Creaser, R. A., Sannigrahi, P., Chacko, T., and Selby, D., 2002. Further evaluation of the Re–Os geochronometer in organic-rich sedimentary rocks: a test of hydrocarbon maturation effects in the Exshaw formation, Western Canada Sedimentary Basin. Geochimica et Cosmochimica Acta, 66, 3441–3452.

    Google Scholar 

  • Cumming, V. M., Selby, D., Lillis, P. G., and Lewan, M. D., 2014. Re–Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments. Geochimica et Cosmochimica Acta, 138, 32–56.

    Google Scholar 

  • Demaiffe, D., Wiszniewska, J., Krzemińska, E., Williams, I. S., Stein, H., Brassinnes, S., Ohnenstetter, D., and Deloule, E., 2013. A hidden alkaline and carbonatite province of early Carboniferous age in NE Poland: zircon U–Pb and pyrrhotite Re–Os geochronology. Journal of Geology, 121, 91–104.

    Google Scholar 

  • Du, A., He, H., Yin, N., Zou, X., Sun, Y., Sun, D., Chen, S., and Qu, W., 1995. A study of the rhenium-osmium geochronometry of molybdenite. Acta Geologica Sinica, 8, 171–181 (in English).

    Google Scholar 

  • Du, A., Wu, S., Sun, D., Wang, S., Qu, W., Markey, R., Stein, H., Morgan, J., and Malinovskiy, D., 2004. Preparation and certification of Re–Os dating reference materials: molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 28, 41–52.

    Google Scholar 

  • Faure, G., and Mensing, T. M., 2005. Isotopes: Principles and Applications. Hoboken, NJ: Wiley.

    Google Scholar 

  • Finlay, A. J., Selby, D., and Osborne, M. J., 2011. Re–Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: temporal implications for regional petroleum systems. Geology, 39, 475–478.

    Google Scholar 

  • Georg, R., West, A., Vance, D., Newman, K., and Halliday, A., 2013. Is the marine osmium isotope record a probe for CO2 release from sedimentary rocks? Earth and Planetary Science Letters, 367, 28–38.

    Google Scholar 

  • Georgiev, S., Stein, H. J., Hannah, J. L., Bingen, B., Weiss, H. M., and Piasecki, S., 2011. Hot acidic Late Permian seas stifle life in record time. Earth and Planetary Science Letters, 310, 389–400.

    Google Scholar 

  • Georgiev, S., Stein, H. J., Hannah, J. L., Weiss, H. M., Bingen, B., Xu, G., Rein, E., Hatlø, V., Løseth, H., Nali, M., and Piasecki, S., 2012. Chemical signals for oxidative weathering predict Re–Os isochroneity in black shales, East Greenland. Chemical Geology, 324–325, 108–121.

    Google Scholar 

  • Gilchrist, R., 1932. A new determination of the atomic weight of osmium. Bureau of Standards, Journal of Research, 9, 279–290.

    Google Scholar 

  • Gramlich, J. W., Murphy, T. J., Garner, E. L., and Shields, W. R., 1973. Absolute Isotopic abundance ratio and atomic weight of a reference sample of Rhenium. Journal of Research of the National Bureau of Standards A, 77A, 691–698.

    Google Scholar 

  • Grice, K., Cao, C., Love, G. D., Böttcher, M. E., Twitchett, R. J., Grosjean, E., Summons, R. E., Turgeon, S. C., Dunning, W., and Jin, T., 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307, 706–709.

    Google Scholar 

  • Hannah, J. L., and Stein, H. J., 2003. Re–Os systematics in syn-sedimentary/diagenetic pyrite: precise ages and Os cycling. In Eliopoulos, D. G., et al. (eds.), Mineral Exploration and Sustainable Development. Rotterdam: Millpress, pp. 81–84.

    Google Scholar 

  • Hannah, J. L., and Stein, H. J., 2012. Re–Os geochemistry. In Melezhik, V. A., Kump, L. R., Fallick, A. E., Strauss, H., Hanski, E. J., Prave, A. R., and Lepland, A. (eds.), Reading the Archive of Earth’s Oxygenation, volume 3: Global Events and the Fennoscandian Arctic Russia – Drilling Early Earth Project. Berlin/Heidelberg: Springer, pp. 1506–1514.

    Google Scholar 

  • Hannah, J. L., Scherstén, A., and Morgan, J. W., 2000. What can the Re–Os isotopic system tell us about diagenetic processes in continental environments? Quite a bit! Geological Society of America Abstracts with Programs, 32, A-346.

    Google Scholar 

  • Hannah, J. L., Bekker, A., Stein, H. J., Markey, R. J., and Holland, H. D., 2004. Primitive Os and 2316 Ma age for marine shale: implications for paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth and Planetary Science Letters, 225, 43–52.

    Google Scholar 

  • Hannah, J. L., Stein, H. J., Marolf, N., and Bingen, B., 2014. Climatic instability and regional glacial advances in the late Ediacaran: American Geophysical Union, December 15–19, San Francisco, electronic abstract #31603.

    Google Scholar 

  • Hassler, D. R., Peucker-Ehrenbrink, B., and Ravizza, G. E., 2000. Rapid determination of Os isotopic composition by sparging OsO4 into a magnetic-sector ICP-MS. Chemical Geology, 166, 1–14.

    Google Scholar 

  • Herr, W., and Merz, E., 1955. Eine neue Methode zur Alterbestimmung von Rhenium- Haltigen Mineralien Mittels Neutronaktivierung. Zeitschrift für Naturforschung, Part A Astrophysik, Physik und Physikalische Chemie, 10, 613–615.

    Google Scholar 

  • Herr, W., Wölfle, E. P., and Kopp, E., 1967. Development and recent applications of the Re/Os dating method. In Radioactive Dating and Methods of Low-Level Counting. Vienna: International Atomic Energy Agency, pp. 499–508.

    Google Scholar 

  • Hirt, B., Herr, W., and Hoffmeister, W., 1963. Age determination by the rhenium-osmium method. In International Atomic Energy Agency, Radioactive Dating: Proceedings of the Symposium on Radioactive Dating, Athens, 19-23 November 1962, pp. 35–44.

    Google Scholar 

  • Howarth, R. J., and McArthur, J. M., 1997. Statistics for strontium isotope stratigraphy: a robust LOWESS fit to the marine Sr-isotope curve for 0–206 Ma, with look-up table for the derivation of numerical age. Journal of Geology, 105, 441–456.

    Google Scholar 

  • Kendall, B. S., Creaser, R. A., Ross, G. M., and Selby, D., 2004. Constraints on the timing of marinoan “snowball Earth” glaciation by 187Re–187Os dating of a neoproterozoic, post-glacial black shale in Western Canada. Earth and Planetary Science Letters, 222, 729–740.

    Google Scholar 

  • Kendall, B., Creaser, R. A., and Selby, D., 2006. Re–Os geochronology of postglacial black shales in Australia: constraints on the timing of “sturtian” glaciation. Geology, 34, 729–732.

    Google Scholar 

  • Kendall, B., Creaser, R. A., and Selby, D., 2009. 187Re–187Os geochronology of Precambrian organic-rich sedimentary rocks. Geological Society, London, Special Publications, 326, 85–107.

    Google Scholar 

  • Kendall, B., van Acken, D., and Creaser, R. A., 2013. Depositional age of the early paleoproterozoic klipputs member, nelani formation (Ghaap Group, Transvaal Supergroup, South Africa) and implications for low-level Re–Os geochronology and paleoproterozoic global correlations. Precambrian Research, 237, 1–12.

    Google Scholar 

  • Korzhinsky, M. A., Tkachenko, S. I., Shmulovich, K. I., Taran, Y. A., and Steinberg, G. S., 2004. Discovery of a pure rhenium mineral at Kudriavy Volcano. Nature, 369, 51–52.

    Google Scholar 

  • Košler, J., Simonetti, A., Sylvester, P., Cox, R., Tubrett, M. N., and Wilton, D., 2003. Laser ablation ICP-MS measurements of Re/Os in molybdenites and implications for Re–Os geochronology. Canadian Mineralogist, 41, 307–320.

    Google Scholar 

  • Li, J., Liang, X.-R., Xi, J.-F., Suzuki, K., and Dong, Y.-H., 2010. Simplified technique for the measurements of Re–Os isotope by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochemical Journal, 44, 73–80.

    Google Scholar 

  • Lillis, P. G., and Selby, D., 2013. Evaluation of the rhenium–osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA. Geochimica et Cosmochimica Acta, 118, 312–330.

    Google Scholar 

  • Lindner, M., Leich, R. J., Russ, G. P., Bazan, J. M., and Borg, R. J., 1989. Direct determination of the half-life of 187Re. Geochimica et Cosmochimica Acta, 53, 1597–1606.

    Google Scholar 

  • Luck, J. M., and Allègre, C. J., 1982. The study of molybdenites through the 187Re–187Os chronometer. Earth and Planetary Science Letters, 61, 291–296.

    Google Scholar 

  • Ludwig, K., 2012. Isoplot/Ex version 3.75, A Geochronological Toolkit for Microsoft Excel. Berkeley, CA: Berkeley Geochronology Center Special Publication.

    Google Scholar 

  • Lugmair, G. W., and Galer, S. J. G., 1992. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta, 56, 1673–1694.

    Google Scholar 

  • Mahdaoui, F., Reisberg, L., Michels, R., Hautevelle, Y., Poirier, Y., and Girard, J.-P., 2013. Effect of progressive precipitation of petroleum asphaltenes on the Re–Os radioisotope system. Chemical Geology, 358, 90–100.

    Google Scholar 

  • Markey, R. J., Stein, H. J., and Morgan, J. W., 1998. Highly precise Re–Os dating of molybdenite using alkaline fusion and NTIMS. Talanta, 45, 935–946.

    Google Scholar 

  • Markey, R. J., Hannah, J. L., Morgan, J. W., and Stein, H. J., 2003. A double spike for osmium analysis of highly radiogenic samples. Chemical Geology, 200, 395–406.

    Google Scholar 

  • Markey, R., Stein, H. J., Hannah, J. L., Zimmerman, A., Selby, D., and Creaser, R. A., 2007. Standardizing Re–Os geochronology: a new molybdenite reference material (Henderson, USA) and the stoichiometry of Os salts. Chemical Geology, 244, 74–87.

    Google Scholar 

  • McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W., and Mattey, D., 2000. Strontium isotope profile of the early Toarcian (Jurassic) anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth and Planetary Science Letters, 179, 269–285.

    Google Scholar 

  • McArthur, J. M., Howarth, R. J., and Bailey, T. R., 2001. Strontium isotope stratigraphy: LOWESS version 3. Best-fit line to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, 109, 155–169.

    Google Scholar 

  • McCandless, T. E., and Ruiz, J., 1993. Rhenium-osmium evidence for regional mineralization in southwestern North America. Science, 261, 1262–1266.

    Google Scholar 

  • Miller, C. A., Peucker-Ehrenbrink, B., and Ball, L., 2009. Precise determination of rhenium isotope composition by multi-collector inductively-coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 24, 1069–1078.

    Google Scholar 

  • Morelli, R. M., Creaser, R. A., Selby, D., Kontak, D. J., and Horne, R. J., 2005. Rhenium-osmium geochronology of arsenopyrite in Meguma Group gold deposits, Meguma terrane, Nova Scotia, Canada: evidence for multiple gold-mineralizing events. Economic Geology, 100, 1229–1242.

    Google Scholar 

  • Morelli, R., Creaser, R. A., Seltmann, R., Stuart, F. M., Selby, D., and Graupner, T., 2007. Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re–Os–He isotopes in arsenopyrite. Geology, 35, 795–798.

    Google Scholar 

  • Morelli, R. M., Bell, C. C., Creaser, R. A., and Simonetti, A., 2010. Constraints on the genesis of gold mineralization at the Homestake gold deposit, Black Hills, South Dakota from rhenium-osmium sulfide geochronology. Mineralium Deposita, 45, 461–480.

    Google Scholar 

  • Morgan, J. W., and Walker, R. J., 1989. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations. Analytica Chimica Acta, 222, 291–300.

    Google Scholar 

  • Morgan, J. W., Horan, M. F., Walker, R. J., and Grossman, J. N., 1995. Rhenium-osmium concentration and isotope systematics in group IIAB iron meteorites. Geochimica et Cosmochimica Acta, 59, 2331–2344.

    Google Scholar 

  • Nozaki, T., Suzuki, K., Ravizza, G., Kimura, J.-I., and Chang, Q., 2012. A method for rapid determination of Re and Os isotope compositions using ID-MC-ICP-MS combined with sparging method. Geostandards and Geoanalytical Research, 36, 131–148.

    Google Scholar 

  • Paquay, F. S., and Ravizza, G., 2012. Heterogeneous seawater 187Os/188Os during Late Pleistocene glaciations. Earth and Planetary Science Letters, 349–350, 126–138.

    Google Scholar 

  • Peucker-Ehrenbrink, B., and Ravizza, G., 2000. The marine osmium isotope record. Terra Nova, 12, 205–219.

    Google Scholar 

  • Peucker-Ehrenbrink, B., Ravizza, G., and Hofmann, A. W., 1995. The marine 187Os/186Os record of the past 80 million years. Earth and Planetary Science Letters, 130, 155–167.

    Google Scholar 

  • Platzner, I., 1999. Modern Isotope Ratio Mass Spectrometry, 2nd edn. Chichester, UK: Wiley.

    Google Scholar 

  • Ravizza, G., 2007. Reconstructing the marine 187Os/188Os record and the particulate flux of meteoritic osmium during the late Cretaceous. Geochimica et Cosmochimica Acta, 71, 1355–1369.

    Google Scholar 

  • Ravizza, G., and Turekian, K. K., 1989. Application of the 187Re–187Os system to black shale geochronometry. Geochimica et Cosmochimica Acta, 53, 3257–3262.

    Google Scholar 

  • Reisberg, L., and Lorand, J. P., 1995. Longevity of sub-continental mantle lithosphere form osmium isotope systematics in orogenic peridotite massifs. Nature, 376, 159–162.

    Google Scholar 

  • Reisberg, L., Lorand, J. P., and Bedini, R. M., 2004. Reliability of Os model ages in pervasively metasomatized continental mantle lithosphere: a case study of Sidamo spinel peridotite xenoliths (East African Rift, Ethiopia). Chemical Geology, 208, 119–140.

    Google Scholar 

  • Rooney, A. D., Selby, D., Housay, J. P., and Renne, P. R., 2010. Re–Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni basin, Mauritania: implications for basin-wide correlations and Re–Os organic-rich sediments systematics. Earth and Planetary Science Letters, 289, 486–496.

    Google Scholar 

  • Rooney, A. D., Chew, D. M., and Selby, D., 2011. Re–Os geochronology of the Neoproterozoic-Cambrian Dalradian Supergroup of Scotland and Ireland: implications for Neoproterozic stratigraphy glaciations and Re–Os systematics. Precambrian Research, 185, 202–214.

    Google Scholar 

  • Rooney, A. D., Selby, D., Lewan, M. D., Lillis, P. G., and Houzay, J.-P., 2012. Evaluating Re–Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments. Geochimica et Cosmochimica Acta, 77, 275–291.

    Google Scholar 

  • Roy-Barman, M., and Allègre, C. J., 1995. 187Os/186Os in oceanic island basalts: tracing oceanic crust recycling in the mantle. Earth and Planetary Science Letters, 129, 145–161.

    Google Scholar 

  • Rudnick, R. L., and Walker, R. J., 2009. Interpreting ages from Re–Os isotopes in peridotites. Lithos, 112S, 1083–1095.

    Google Scholar 

  • Schoenberg, R., Nägler, T. F., and Kramers, J. D., 2000. Precise Os isotope ratio and Re–Os isotope dilution measurements down to the picogram level using multicollector inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry, 197, 85–94.

    Google Scholar 

  • Selby, D., and Creaser, R. A., 2001. Re–Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology, 96, 197–204.

    Google Scholar 

  • Selby, D., and Creaser, R. A., 2003. Re–Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods. Chemical Geology, 200, 225–240.

    Google Scholar 

  • Selby, D., and Creaser, R. A., 2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re–Os isotopic analysis of molybdenite: testing spatial restrictions for reliable Re–Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochimica et Cosmochimica Acta, 68, 3897–3908.

    Google Scholar 

  • Selby, D., and Creaser, R. A., 2005a. Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re–Os black shale chronometer. Geology, 33, 545–548.

    Google Scholar 

  • Selby, D., and Creaser, R. A., 2005b. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes. Science, 308, 1293–1295.

    Google Scholar 

  • Selby, D., Creaser, R. A., Hart, C. J. R., Rombach, C. S., Thompson, J. F. H., Smith, M. T., Bakke, A. A., and Goldfarb, R. J., 2002. Absolute timing of sulfide and gold mineralization: a comparison of Re–Os molybdenite and Ar–Ar mica methods from the Tintina Gold Belt, Alaska. Geology, 30, 791–794.

    Google Scholar 

  • Selby, D., Creaser, R. A., Dewing, K., and Fowler, M., 2005. Evaluation of bitumen as a 187Re–187Os geochronometer for hydrocarbon maturation and migration: a test case from the Polaris MVT deposit, Canada. Earth and Planetary Science Letters, 235, 1–15.

    Google Scholar 

  • Selby, D., Creaser, R. A., Stein, H. J., Markey, R. J., and Hannah, J. L., 2007a. Assessment of the 187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems. Geochimica et Cosmochimica Acta, 71, 1999–2013.

    Google Scholar 

  • Selby, D., Creaser, R. A., and Fowler, M. G., 2007b. Re–Os elemental and isotopic systematics in crude oils. Geochimica et Cosmochimica Acta, 71, 378–386.

    Google Scholar 

  • Selby, D., Mutterlose, J., and Condon, D. J., 2009. U–Pb and Re–Os geochronology of the Aptian/Albian and Cenomanian/Turonian stage boundaries: implications for timescale calibration, osmium isotope seawater composition and Re–Os systematics in organic-rich sediments. Chemical Geology, 265, 394–409.

    Google Scholar 

  • Sen, I. S., and Peucker-Ehrenbrink, B., 2014. Determination of osmium concentrations and 187Os/188Os of crude oils and source rocks by coupling high-pressure, high-temperature digestion with sparging OsO4 into a multicollector inductively coupled plasma mass spectrometer. Analytical Chemistry, 86, 2982–2988.

    Google Scholar 

  • Sharma, M., Papanastassiou, D. A., and Wasserburg, G. J., 1997. The concentration and isotopic composition of osmium in the oceans. Geochimica et Cosmochimica Acta, 61, 3287–3299.

    Google Scholar 

  • Shen, J. J., Papanastassiou, D. A., and Wasserburg, G. J., 1996. Precise Re–Os determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta, 60, 2887–2900.

    Google Scholar 

  • Shields, G. A., 2007. A normalized seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth, 2, 35–42.

    Google Scholar 

  • Shirey, S. B., and Walker, R. J., 1995. Carius tube digestion for low blank rhenium-osmium analysis. Analytical Chemistry, 34, 2136–2141.

    Google Scholar 

  • Shirey, S. B., and Walker, R. J., 1998. The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences, 26, 423–500.

    Google Scholar 

  • Smoliar, M. I., Walker, R. J., and Morgan, J. W., 1996. Re–Os ages of Group IIA, IIIA, IVA and IVB iron meteorites. Science, 271, 1099–1102.

    Google Scholar 

  • Stein, H. J., 2006. Low-rhenium molybdenite by metamorphism in northern Sweden: recognition, genesis, and global implications. Lithos, 87, 300–327.

    Google Scholar 

  • Stein, H. J., 2014. Dating and tracing the history of ore formation. In Holland, H. D., and Turekian, K. K. (eds.), Treatise on Geochemistry, 2nd edn. Oxford: Elsevier, Vol. 13, pp. 87–118.

    Google Scholar 

  • Stein, H. J., and Bingen, B., 2002. 1.05–1.01 Ga Sveconorwegian metamorphism and deformation of the supracrustal sequence at Sæsvatn, south Norway: Re–Os dating of Cu–Mo mineral occurrences. In Blundell, D., Neubauer, F., and von Quadt, A. (eds.), The Timing and Location of Major Ore Deposits in an Evolving Orogen. Geological Society, London, Special Publications, Vol. 204, pp. 319–335.

    Google Scholar 

  • Stein, H. J., Markey, R. J., Morgan, J. W., Du, A., and Sun, Y., 1997. Highly precise and accurate Re–Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China. Economic Geology, 92, 827–835.

    Google Scholar 

  • Stein, H. J., Morgan, J. W., and Scherstén, A., 2000. Re–Os dating of low-level highly-radiogenic (LLHR) sulfides: the Harnäs gold deposit, southwest Sweden records continental scale tectonic events. Economic Geology, 95, 1657–1671.

    Google Scholar 

  • Stein, H. J., Markey, R. J., Morgan, J. W., Hannah, J. L., and Scherstén, A., 2001. The remarkable Re–Os chronometer in molybdenite: how and why it works. Terra Nova, 13, 479–486.

    Google Scholar 

  • Stein, H., Scherstén, A., Hannah, J., and Markey, R., 2003. Sub-grain scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochimica et Cosmochimica Acta, 67, 3673–3686.

    Google Scholar 

  • Stein, H. J., Hannah, J. L., Zimmerman, A., Markey, R., Sarkar, S. C., and Pal, A. B., 2004. A 2.5 Ga porphyry Cu–Mo–Au deposit at Malanjkhand, central India: implications for Late Archean continental assembly. Precambrian Research, 134, 189–226.

    Google Scholar 

  • Stein, H. J., Andrews, S. D., Hannah, J. L., Gaina, C., Whitham, A. G., Yang, G., and Xu, G., 2012. Triassic mudstones (Gråklint Beds) containing hydrocarbons with early Barremian and Santonian ages, Jameson Land, East Greenland. In American Association of Petroleum Geologists Annual Conference and Exhibition, Abstract #1236837.

    Google Scholar 

  • Suzuki, K., Qi-Lu, Shimizu, H., and Masuda, A., 1992. Determination of osmium abundance in molybdenite mineral by isotope dilution mass spectrometry with microwave digestion using potassium dichromate as oxidizing agent. Analyst, 117, 1151–1156.

    Google Scholar 

  • Suzuki, K., Qi-Lu, Shimizu, H., and Masuda, A., 1993. Reliable Re–Os age for molybdenite. Geochimica et Cosmochimica Acta, 57, 1625–1628.

    Google Scholar 

  • Suzuki, K., Shimizu, H., and Masuda, A., 1996. Re–Os dating of molybdenites from ore deposits in Japan: implications for closure temperature of Re–Os system for molybdenite and cooling history of molybdenum ore deposits. Geochimica et Cosmochimica Acta, 60, 3151–3159.

    Google Scholar 

  • Suzuki, K., Miyata, Y., and Kanazawa, N., 2004. Precise Re Isotope ratio measurements by negative thermal Ionization mass Spectrometry (NTI-MS) using total evaporation technique. International Journal of Mass Spectrometry, 235, 97–101.

    Google Scholar 

  • Takahashi, Y., Tomoya, U., Suzuki, K., Tanida, H., Terada, Y., and Hattori, K. H., 2007. An atomic level study of rhenium and radiogenic osmium in molybdenite. Geochimica et Cosmochimica Acta, 71, 5180–5190.

    Google Scholar 

  • Tessalina, S. G., Yudovskaya, M. A., Chaplygin, I. V., Birck, J.-L., and Capmas, F., 2008. Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano. Geochimica et Cosmochimica Acta, 72, 889–909.

    Google Scholar 

  • Turgeon, S. C., and Creaser, R. A., 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature, 454, 323–326.

    Google Scholar 

  • Völkening, J., Walczyk, T., and Heumann, K. G., 1991. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 105, 147–159.

    Google Scholar 

  • Walker, R. J., Morgan, J. W., Smoliar, M. I., Beary, E., Czamanske, G. K., and Horan, M. F., 1997. Applications of the 190Pt–186Os isotope system to geochemistry and cosmochemistry. Geochimica et Cosmochimica Acta, 61, 4799–4808.

    Google Scholar 

  • Watanabe, Y., and Stein, H. J., 2000. Re–Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu–Mo deposits, Mongolia, and tectonic implications. Economic Geology, 95, 1537–1542.

    Google Scholar 

  • Xu, G., Hannah, J. L., Stein, H. J., Bingen, B., Yang, G., Zimmerman, A., Weitschat, W., Mørk, A., and Weiss, H. M., 2009. Re–Os geochronology of Arctic black shales to evaluate the Anisian-Ladinian boundary and global faunal correlations. Earth and Planetary Science Letters, 288, 581–587.

    Google Scholar 

  • Xu, G., Hannah, J. L., Stein, H. J., Mørk, A., Vigran, J. O., Bingen, B., Schutt, D., and Lundschien, B. A., 2014. Cause of Upper Triassic climate crisis revealed by Re–Os geochemistry of Boreal black shales. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 222–232.

    Google Scholar 

  • Yang, G., Hannah, J. L., Zimmerman, A., Stein, H. J., and Bekker, A., 2009. Re–Os depositional age for Archean carbonaceous slates from the southwestern Superior Province: challenges and insights. Earth and Planetary Science Letters, 280, 83–92.

    Google Scholar 

  • Yin, Q. Z., Jacobsen, S. B., Lee, C.-T., McDonough, W. F., Rudnick, R. L., and Horn, I., 2001. A gravimetric K2OsCl6 standard: application to precise and accurate Os spike calibration. Geochimica et Cosmochimica Acta, 65, 2113–2127.

    Google Scholar 

  • York, D., 1969. Least-squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters, 5, 320–324.

    Google Scholar 

  • Zimmerman, A., Stein, H. J., Hannah, J. L., Tuttas, B., Yang, G., and Beitscher, B., 2007. Instrumental mass fractionation overcome by total evaporation. Geochimica et Cosmochimica Acta, 71, A1176.

    Google Scholar 

  • Zimmerman, A., Stein, H. J., Hannah, J. L., Kozelj, D., Bogdanov, K., and Berza, T., 2008. Tectonic configuration of the Apusini-Banat-Timok-Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re–Os molybdenite ages. Mineralium Deposita, 43, 1–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly Stein Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Stein, H., Hannah, J. (2014). Rhenium–Osmium Geochronology: Sulfides, Shales, Oils, and Mantle. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics