Skip to main content

Bomb Carbon

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Scientific Dating Methods
  • 182 Accesses

Synonyms

Bomb 14C; Bomb radiocarbon; Excess anthropogenic radiocarbon; Excess radiocarbon

Definition

Bomb carbon refers to anthropogenic radiocarbon produced and released into the atmosphere during aboveground nuclear weapons testing, primarily between 1945 and 1963.

Introduction

When Willard Libby introduced the radiocarbon method (Libby et al. 1949), global atmospheric radiocarbon (14C) from nuclear weapons fallout was undetectable. This soon changed, however, as weapons testing programs accelerated during the 1950s and into the 1960s. At the same time, new radiocarbon laboratories were being established in Europe, North America, Africa, and Australia. It did not take long for researchers to discover a dramatic increase in atmospheric 14C from nuclear weapons testing fallout, in both the Northern Hemisphere (de Vries 1958; Broecker and Walton 1959; Münnich and Vogel 1958) and the Southern Hemisphere (Rafter and Fergusson 1957; Münnich and Vogel 1958; Broecker and Walton 1959). This...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Andrews, A. H., Natanson, L. J., Kerr, L. A., Gurgess, G. H., and Cailliet, G. M., 2011. Bomb radiocarbon and tag-recapture dating of sandbar shark (Carcharhinus plumbeus). Fishery Bulletin, 109(4), 454–465.

    Google Scholar 

  • Broecker, W. S., and Walton, A., 1959. Radiocarbon from nuclear tests. Science, 130, 309–314.

    Article  Google Scholar 

  • Castagnoli, G., and Lal, D., 1980. Solar modulation effects in terrestrial production of carbon-14. Radiocarbon, 22(2), 133–158.

    Google Scholar 

  • Craig, H., 1957. The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea. Tellus, 9(1), 1–17.

    Article  Google Scholar 

  • Craig, H., 1972. The GEOSECS program: 1970–1971. Earth and Planetary Science Letters, 16, 47–49.

    Article  Google Scholar 

  • Craig, H., 1974. The GEOSECS program: 1972–1973. Earth and Planetary Science Letters, 23, 63–64.

    Article  Google Scholar 

  • Craig, H., and Turekian, K. K., 1976. The GEOSECS program: 1973–1976. Earth and Planetary Science Letters, 32, 217–219.

    Article  Google Scholar 

  • Craig, H., and Turekian, K. K., 1980. The GEOSECS program: 1976–1979. Earth and Planetary Science Letters, 49, 263–265.

    Article  Google Scholar 

  • de Vries, H., 1958. Atomic bomb effect: variation of radiocarbon in plants, shells, and snails in the past 4 years. Science, 128, 250–251.

    Article  Google Scholar 

  • Donahue, D. J., Linick, T. W., and Jull, A. J. T., 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon, 32(2), 135–142.

    Google Scholar 

  • Druffel, E. R. M., 1981. Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean. Geophysical Research Letters, 8, 59–62.

    Article  Google Scholar 

  • Druffel, E. R. M., 1987. Bomb radiocarbon in the Pacific: annual and seasonal timescale variations. Journal of Marine Research, 45, 667–698.

    Article  Google Scholar 

  • Druffel, E. R. M., and Linick, T. W., 1978. Radiocarbon in annual coral rings of Florida. Geophysical Research Letters, 5, 913–916.

    Article  Google Scholar 

  • Ehleringer, J. R., Casale, J. F., Barnette, J. E., Xu, X., Lott, M. J., and Hurley, J., 2012. 14C analyses quantify time lag between coca leaf harvest and street-level seizure of cocaine. Forensic Science International, 214(1–3), 7–12.

    Article  Google Scholar 

  • English, N., Dettman, D. L., and Williams, D. G., 2010. A 26-year stable isotope record of humidity and El Niño-enhanced precipitation in the spines of saguaro cactus, Carnegiea gigantea. Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 108–119.

    Article  Google Scholar 

  • Enting, I., 1982. Nuclear weapons data for use in carbon cycle monitoring. CSIRO Division of Atmospheric Physics Technical Paper No. 44, Melbourne.

    Google Scholar 

  • Enting, I., and Pearman, G. I., 1982. Description of a one-dimensional global carbon cycle model. CSIRO Division of Atmospheric Physics Technical Paper No. 42, Melbourne.

    Google Scholar 

  • Glasstone, S., and Dolan, P. J., 1977. The Effects of Nuclear Weapons. Washington, DC: U. S. Department of Defense/U. S. Department of Energy.

    Book  Google Scholar 

  • Griffith, D. R., Martin, W. R., and Eglinton, T. I., 2010. The radiocarbon age of organic carbon in marine surface sediments. Geochimica et Cosmochimica Acta, 74, 6788–6800.

    Article  Google Scholar 

  • Hesshaimer, V., and Levin, I., 2000. Revision of the stratospheric bomb 14CO2 inventory. Journal of Geophysical Research, 105, 11,641–11,658.

    Article  Google Scholar 

  • Hesshaimer, V., Heimann, M., and Levin, I., 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature, 370, 201–203.

    Article  Google Scholar 

  • Hodge, E., McDonald, J., Fischer, M., Redwood, D., Hua, Q., Levchenko, V., Drysdale, R., Waring, C., and Fink, D., 2011. Using the C-14 bomb pulse to date young speleothems. Radiocarbon, 53(2), 345–357.

    Google Scholar 

  • Hogg, A. G., McCormac, F. G., Higham, T. F. G., Reimer, P. J., Baillie, M. G. L., and Palmer, J. G., 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon, 44(3), 633–640.

    Google Scholar 

  • Hua, Q., and Barbetti, M., 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon, 46(3), 1273–1298.

    Google Scholar 

  • Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H., 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles, 18, 1–23, doi:10.1029/2004GB002247.

    Article  Google Scholar 

  • Lal, D., and Peters, B., 1967. Cosmic ray produced radioactivity on the Earth. Handbuch der Physik, 46(2), 551–612.

    Article  Google Scholar 

  • Lassey, K. R., Enting, I., and Trudinger, C. M., 1996. The earth’s radiocarbon budget: a consistent model of the global carbon and radiocarbon cycles. Tellus, Series B, 48, 487–501.

    Article  Google Scholar 

  • Levin, I., and Kromer, B., 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon, 46(3), 1261–1272.

    Google Scholar 

  • Libby, W. F., 1955. Radiocarbon Dating, 2nd edn. Chicago: Chicago University Press.

    Google Scholar 

  • Libby, W. F., Anderson, E. C., and Arnold, J. R., 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science, 109, 227–228.

    Article  Google Scholar 

  • Lovelock, C. E., Sorrell, B. K., Hancock, N., Hua, Q., and Swales, A., 2010. Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems, 13, 437–451, doi:10.1007/s10021-010-9329-2.

    Article  Google Scholar 

  • McCormac, F. G., Hogg, A. G., Higham, T. F. G., Lynch-Stieglitz, J., Broecker, W. S., Baillie, M. G. L., Palmer, J., Xiong, L., Pilcher, J. R., Brown, D., and Hoper, S. T., 1998. Temporal variation in the interhemispheric C-14 offset. Geophysical Research Letters, 25, 1321–1324.

    Article  Google Scholar 

  • McNichol, A., Schneider, R. J., von Reden, K. F., Gagnon, A. R., Elder, K. L., NOSAMS, Key, R. M., and Quay, P. D., 2000. Ten years after – the WOCE AMS radiocarbon program. Nuclear Instruments and Methods B, 172, 479–484.

    Article  Google Scholar 

  • Münnich, K. O., and Vogel, J. C., 1958. Durch Atomexplosionen erzeugter radiokohlenstoff in der Atmosphäre. Naturwissenschaften, 45, 327–329.

    Article  Google Scholar 

  • Naegler, T., and Levin, I., 2006. Closing the global radiocarbon budget 1945–2005. Journal of Geophysical Research, 111, 1–14, doi:10.1029/2005JD006758.

    Article  Google Scholar 

  • Nydal, R., 1968. Further investigation on the transfer of radiocarbon in nature. Journal of Geophysical Research, 73(12), 389–406.

    Article  Google Scholar 

  • Nydal, R., Lövseth, K., and Skogseth, F. H., 1980. Transfer of bomb 14C to the ocean surface. Radiocarbon, 22(3), 626–635.

    Google Scholar 

  • Passerotti, M. S., Carlson, J. K., Piercy, A. N., and Campana, S. E., 2010. Age validation of great hammerhead shark (Sphyrna mokarran), determined by bomb radiocarbon analysis. Fisheries Bulletin, 108, 346–351.

    Google Scholar 

  • Rafter, T. A., and Fergusson, G. J., 1957. “Atom bomb effect”-recent increase of Carbon-14 content of the atmosphere and biosphere. Science, 126, 557–558.

    Article  Google Scholar 

  • Rath, H., 1988. Simulation der globalen 85 Kr- und 14 CO 2 – Verteilung mit Hilfe eines zeitabhängigen, zweidimensionalen modells der atmosphäre. PhD thesis, Heidelberg University.

    Google Scholar 

  • Revelle, R., and Suess, H. E., 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9(1), 18–27.

    Article  Google Scholar 

  • Speller, C. F., Spalding, K. L., Buchholz, B. A., Hildebrand, D., Moore, J., Mathewes, R., Skinner, M. F., and Yang, D. Y., 2012. Personal identification of cold case remains through combined contribution from anthropological, mtDNA, and bomb-pulse dating analyses. Journal of Forensic Sciences, 57(5), 1354–1360, doi:10.1111/j.1556-4029.2012.02223.x.

    Article  Google Scholar 

  • Stuiver, M., Östlund, H. G., and McConnaughey, T. A., 1981. GEOSECS Atlantic and Pacific 14C distribution. In Bolin, B. (ed.), Carbon Cycle Modeling (Scope 16). New York: Wiley, pp. 201–221.

    Google Scholar 

  • Tans, P., 1981. A compilation of bomb 14C data for use in global carbon model calculations. In Bolin, B. (ed.), Carbon Cycle Modeling (Scope 16). New York: Wiley, pp. 131–157.

    Google Scholar 

  • Telegadas, K., 1971. The seasonal atmospheric distribution and inventories of excess carbon-14 from March 1955 to July 1969. U. S. Atomic Energy Commission Report HASL-243.

    Google Scholar 

  • Yang, X., North, R., and Romney, C., 2000. CMR nuclear explosion data base (revision 3). CMR Technical Report 00/16. Arlington, VA: Center for Monitoring Research, U. S. Army Space and Missile Defense Command.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Burr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Burr, G.S. (2014). Bomb Carbon. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_26-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_26-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Bomb Carbon
    Published:
    30 August 2014

    DOI: https://doi.org/10.1007/978-94-007-6326-5_26-2

  2. Original

    Bomb Carbon
    Published:
    16 October 2013

    DOI: https://doi.org/10.1007/978-94-007-6326-5_26-1