Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Bomb Carbon

  • George S. Burr
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-94-007-6326-5_26-2

Synonyms

Definition

Bomb carbon refers to anthropogenic radiocarbon produced and released into the atmosphere during aboveground nuclear weapons testing, primarily between 1945 and 1963.

Introduction

When Willard Libby introduced the radiocarbon method (Libby et al. 1949), global atmospheric radiocarbon (14C) from nuclear weapons fallout was undetectable. This soon changed, however, as weapons testing programs accelerated during the 1950s and into the 1960s. At the same time, new radiocarbon laboratories were being established in Europe, North America, Africa, and Australia. It did not take long for researchers to discover a dramatic increase in atmospheric 14C from nuclear weapons testing fallout, in both the Northern Hemisphere (de Vries 1958; Broecker and Walton 1959; Münnich and Vogel 1958) and the Southern Hemisphere (Rafter and Fergusson 1957; Münnich and Vogel 1958; Broecker and Walton 1959). This...

Keywords

Nuclear Weapon Accelerator Mass Spectrometry Accelerator Mass Spectrometry Annual Growth Ring World Ocean Circulation Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Andrews, A. H., Natanson, L. J., Kerr, L. A., Gurgess, G. H., and Cailliet, G. M., 2011. Bomb radiocarbon and tag-recapture dating of sandbar shark (Carcharhinus plumbeus). Fishery Bulletin, 109(4), 454–465.Google Scholar
  2. Broecker, W. S., and Walton, A., 1959. Radiocarbon from nuclear tests. Science, 130, 309–314.CrossRefGoogle Scholar
  3. Castagnoli, G., and Lal, D., 1980. Solar modulation effects in terrestrial production of carbon-14. Radiocarbon, 22(2), 133–158.Google Scholar
  4. Craig, H., 1957. The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea. Tellus, 9(1), 1–17.CrossRefGoogle Scholar
  5. Craig, H., 1972. The GEOSECS program: 1970–1971. Earth and Planetary Science Letters, 16, 47–49.CrossRefGoogle Scholar
  6. Craig, H., 1974. The GEOSECS program: 1972–1973. Earth and Planetary Science Letters, 23, 63–64.CrossRefGoogle Scholar
  7. Craig, H., and Turekian, K. K., 1976. The GEOSECS program: 1973–1976. Earth and Planetary Science Letters, 32, 217–219.CrossRefGoogle Scholar
  8. Craig, H., and Turekian, K. K., 1980. The GEOSECS program: 1976–1979. Earth and Planetary Science Letters, 49, 263–265.CrossRefGoogle Scholar
  9. de Vries, H., 1958. Atomic bomb effect: variation of radiocarbon in plants, shells, and snails in the past 4 years. Science, 128, 250–251.CrossRefGoogle Scholar
  10. Donahue, D. J., Linick, T. W., and Jull, A. J. T., 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon, 32(2), 135–142.Google Scholar
  11. Druffel, E. R. M., 1981. Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean. Geophysical Research Letters, 8, 59–62.CrossRefGoogle Scholar
  12. Druffel, E. R. M., 1987. Bomb radiocarbon in the Pacific: annual and seasonal timescale variations. Journal of Marine Research, 45, 667–698.CrossRefGoogle Scholar
  13. Druffel, E. R. M., and Linick, T. W., 1978. Radiocarbon in annual coral rings of Florida. Geophysical Research Letters, 5, 913–916.CrossRefGoogle Scholar
  14. Ehleringer, J. R., Casale, J. F., Barnette, J. E., Xu, X., Lott, M. J., and Hurley, J., 2012. 14C analyses quantify time lag between coca leaf harvest and street-level seizure of cocaine. Forensic Science International, 214(1–3), 7–12.CrossRefGoogle Scholar
  15. English, N., Dettman, D. L., and Williams, D. G., 2010. A 26-year stable isotope record of humidity and El Niño-enhanced precipitation in the spines of saguaro cactus, Carnegiea gigantea. Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 108–119.CrossRefGoogle Scholar
  16. Enting, I., 1982. Nuclear weapons data for use in carbon cycle monitoring. CSIRO Division of Atmospheric Physics Technical Paper No. 44, Melbourne.Google Scholar
  17. Enting, I., and Pearman, G. I., 1982. Description of a one-dimensional global carbon cycle model. CSIRO Division of Atmospheric Physics Technical Paper No. 42, Melbourne.Google Scholar
  18. Glasstone, S., and Dolan, P. J., 1977. The Effects of Nuclear Weapons. Washington, DC: U. S. Department of Defense/U. S. Department of Energy.CrossRefGoogle Scholar
  19. Griffith, D. R., Martin, W. R., and Eglinton, T. I., 2010. The radiocarbon age of organic carbon in marine surface sediments. Geochimica et Cosmochimica Acta, 74, 6788–6800.CrossRefGoogle Scholar
  20. Hesshaimer, V., and Levin, I., 2000. Revision of the stratospheric bomb 14CO2 inventory. Journal of Geophysical Research, 105, 11,641–11,658.CrossRefGoogle Scholar
  21. Hesshaimer, V., Heimann, M., and Levin, I., 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature, 370, 201–203.CrossRefGoogle Scholar
  22. Hodge, E., McDonald, J., Fischer, M., Redwood, D., Hua, Q., Levchenko, V., Drysdale, R., Waring, C., and Fink, D., 2011. Using the C-14 bomb pulse to date young speleothems. Radiocarbon, 53(2), 345–357.Google Scholar
  23. Hogg, A. G., McCormac, F. G., Higham, T. F. G., Reimer, P. J., Baillie, M. G. L., and Palmer, J. G., 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon, 44(3), 633–640.Google Scholar
  24. Hua, Q., and Barbetti, M., 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon, 46(3), 1273–1298.Google Scholar
  25. Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T.-H., 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles, 18, 1–23, doi:10.1029/2004GB002247.CrossRefGoogle Scholar
  26. Lal, D., and Peters, B., 1967. Cosmic ray produced radioactivity on the Earth. Handbuch der Physik, 46(2), 551–612.CrossRefGoogle Scholar
  27. Lassey, K. R., Enting, I., and Trudinger, C. M., 1996. The earth’s radiocarbon budget: a consistent model of the global carbon and radiocarbon cycles. Tellus, Series B, 48, 487–501.CrossRefGoogle Scholar
  28. Levin, I., and Kromer, B., 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon, 46(3), 1261–1272.Google Scholar
  29. Libby, W. F., 1955. Radiocarbon Dating, 2nd edn. Chicago: Chicago University Press.Google Scholar
  30. Libby, W. F., Anderson, E. C., and Arnold, J. R., 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science, 109, 227–228.CrossRefGoogle Scholar
  31. Lovelock, C. E., Sorrell, B. K., Hancock, N., Hua, Q., and Swales, A., 2010. Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems, 13, 437–451, doi:10.1007/s10021-010-9329-2.CrossRefGoogle Scholar
  32. McCormac, F. G., Hogg, A. G., Higham, T. F. G., Lynch-Stieglitz, J., Broecker, W. S., Baillie, M. G. L., Palmer, J., Xiong, L., Pilcher, J. R., Brown, D., and Hoper, S. T., 1998. Temporal variation in the interhemispheric C-14 offset. Geophysical Research Letters, 25, 1321–1324.CrossRefGoogle Scholar
  33. McNichol, A., Schneider, R. J., von Reden, K. F., Gagnon, A. R., Elder, K. L., NOSAMS, Key, R. M., and Quay, P. D., 2000. Ten years after – the WOCE AMS radiocarbon program. Nuclear Instruments and Methods B, 172, 479–484.CrossRefGoogle Scholar
  34. Münnich, K. O., and Vogel, J. C., 1958. Durch Atomexplosionen erzeugter radiokohlenstoff in der Atmosphäre. Naturwissenschaften, 45, 327–329.CrossRefGoogle Scholar
  35. Naegler, T., and Levin, I., 2006. Closing the global radiocarbon budget 1945–2005. Journal of Geophysical Research, 111, 1–14, doi:10.1029/2005JD006758.CrossRefGoogle Scholar
  36. Nydal, R., 1968. Further investigation on the transfer of radiocarbon in nature. Journal of Geophysical Research, 73(12), 389–406.CrossRefGoogle Scholar
  37. Nydal, R., Lövseth, K., and Skogseth, F. H., 1980. Transfer of bomb 14C to the ocean surface. Radiocarbon, 22(3), 626–635.Google Scholar
  38. Passerotti, M. S., Carlson, J. K., Piercy, A. N., and Campana, S. E., 2010. Age validation of great hammerhead shark (Sphyrna mokarran), determined by bomb radiocarbon analysis. Fisheries Bulletin, 108, 346–351.Google Scholar
  39. Rafter, T. A., and Fergusson, G. J., 1957. “Atom bomb effect”-recent increase of Carbon-14 content of the atmosphere and biosphere. Science, 126, 557–558.CrossRefGoogle Scholar
  40. Rath, H., 1988. Simulation der globalen 85 Kr- und 14 CO 2 – Verteilung mit Hilfe eines zeitabhängigen, zweidimensionalen modells der atmosphäre. PhD thesis, Heidelberg University.Google Scholar
  41. Revelle, R., and Suess, H. E., 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9(1), 18–27.CrossRefGoogle Scholar
  42. Speller, C. F., Spalding, K. L., Buchholz, B. A., Hildebrand, D., Moore, J., Mathewes, R., Skinner, M. F., and Yang, D. Y., 2012. Personal identification of cold case remains through combined contribution from anthropological, mtDNA, and bomb-pulse dating analyses. Journal of Forensic Sciences, 57(5), 1354–1360, doi:10.1111/j.1556-4029.2012.02223.x.CrossRefGoogle Scholar
  43. Stuiver, M., Östlund, H. G., and McConnaughey, T. A., 1981. GEOSECS Atlantic and Pacific 14C distribution. In Bolin, B. (ed.), Carbon Cycle Modeling (Scope 16). New York: Wiley, pp. 201–221.Google Scholar
  44. Tans, P., 1981. A compilation of bomb 14C data for use in global carbon model calculations. In Bolin, B. (ed.), Carbon Cycle Modeling (Scope 16). New York: Wiley, pp. 131–157.Google Scholar
  45. Telegadas, K., 1971. The seasonal atmospheric distribution and inventories of excess carbon-14 from March 1955 to July 1969. U. S. Atomic Energy Commission Report HASL-243.Google Scholar
  46. Yang, X., North, R., and Romney, C., 2000. CMR nuclear explosion data base (revision 3). CMR Technical Report 00/16. Arlington, VA: Center for Monitoring Research, U. S. Army Space and Missile Defense Command.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.NSF-Arizona Accelerator Mass Spectrometry LaboratoryUniversity of ArizonaTucsonUSA