Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Uranium Series, Opal

  • James B. Paces
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_230-1



Uranium series dating. A geochronological method that uses intermediate decay products in the 238U or 235U radioactive decay chains to measure the length of time required to reach the current state of radioactive disequilibrium from an initial condition.

Opal. Amorphous or only partially crystalline hydrated silicon dioxide (SiO2nH2O) precipitated from aqueous solutions in near-Earth-surface environments.

Mineralogy and Geochemistry of Opal

Opal is a common mineraloid found near the surface of the Earth that consists of silica containing nonstructural water (SiO2nH2O). Opal typically forms by precipitation of colloidal silica from silica-saturated aqueous solutions in response to decreases in temperature, neutralization of alkaline solutions, increases in salinity, or evaporative concentration. Sedimentation of colloidal microspheres (<500 nm) results in deposits of amorphous silica gel. Subsequent dewatering...


Thermal Ionization Mass Spectrometry Laser Ablation Inductively Couple Plasma Mass Spectrometry Thermal Ionization Mass Spectrometer Opal Hemisphere Isotope Dilution Thermal Ionization Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bernal, J.-P., Eggins, S. M., and McCulloch, M. T., 2005. Accurate in situ 238U–234U–232Th–230Th analysis of silicate glasses and iron oxides by laser-ablation MC-ICP-MS. Journal of Analytical and Atomic Spectrometry, 20, 1240–1249.CrossRefGoogle Scholar
  2. Bischoff, J. L., and Fitzpatrick, J. A., 1991. U-series dating of impure carbonates: an isochron technique using total-sample dissolution. Geochimica et Cosmochimica Acta, 55, 543–554.CrossRefGoogle Scholar
  3. Darraugh, P. J., Gaskin, A. J., Terrell, B. C., and Sanders, J. V., 1965. Origin of precious opal. Nature, 209, 13–16.CrossRefGoogle Scholar
  4. Eggins, S. M., Grün, R., McCulloch, M. T., Pike, A. W. G., Chappell, J., Kinsley, L., Mortimer, G., Shelley, M., Murray-Wallace, C. V., Spötl, C., and Taylor, L., 2005. In situ U-series dating by laser-ablation multi-collector ICPMS: new prospects for quaternary geochronology. Quaternary Science Reviews, 24, 2523–2538.CrossRefGoogle Scholar
  5. Gaillou, E., Delaunay, A., Rondeau, B., Bouhnik-le-Coz, M., Fritsch, E., Cornen, G., and Monnier, C., 2008. The geochemistry of gem opals as evidence of their origin. Ore Geology Reviews, 34, 113–126.CrossRefGoogle Scholar
  6. Grün, R., Aubert, M., Joannes-Boyau, R., and Moncel, M.-H., 2008. High resolution analysis of uranium and thorium concentration as well as U-series isotope distributions in a Neanderthal tooth from Payre (Ardèche, France) using laser ablation ICP-MS. Geochimica et Cosmochimica Acta, 72, 5278–5290.CrossRefGoogle Scholar
  7. Hanchar, J. M., 1999. Spectroscopic techniques applied to uranium in minerals. In Burns, P. C., and Finch, R. (eds.), Uranium: Mineralogy, Geochemistry and the Environment. Washington, DC: Mineralogical Society of America. Reviews in Mineralogy, Vol. 38, pp. 499–519.Google Scholar
  8. Herdianita, N. R., Browne, P. R. L., Rogers, K. A., and Campbell, K. A., 2000. Mineralogical and textural changes accompanying ageing of silica sinter. Mineralium Deposita, 35, 48–62.CrossRefGoogle Scholar
  9. Jones, J. B., Sanders, J. V., and Segnit, E. R., 1964. Structure of opal. Nature, 204, 990–991.CrossRefGoogle Scholar
  10. Jones, J. B., and Segnit, E. R., 1971. The nature of opal. Part 1: nomenclature and constituent phases. Journal of the Geological Society of Australia, 8, 57–68.CrossRefGoogle Scholar
  11. Kano, K., 1983. Ordering of opal-CT in diagenesis. Geochemical Journal, 17, 87–93.CrossRefGoogle Scholar
  12. Langmuir, D., 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42, 547–569.CrossRefGoogle Scholar
  13. Ludwig, K. R., and Paces, J. B., 2002. Uranium-series dating of pedogenic silica and carbonate, Crater Flat, Nevada. Geochimica et Cosmochimica Acta, 66, 487–506.CrossRefGoogle Scholar
  14. Ludwig, K. R., Lindsey, D. A., Zielinski, R. A., and Simmons, K. R., 1980. U-Pb ages of uraniferous opals and implications for the history of beryllium, fluorine, and uranium mineralization at Spor Mountain, Utah. Earth and Planetary Science Letters, 46, 221–232.CrossRefGoogle Scholar
  15. Luo, S., and Ku, T.-L., 1991. U-series isochron dating: a generalized method employing total sample dissolution. Geochimica et Cosmochimica Acta, 55, 555–564.CrossRefGoogle Scholar
  16. Maher, K., Wooden, J. L., Paces, J. B., and Miller, D. M., 2007. 230Th-U dating of surficial deposits using the ion microprobe (SHRIMP-RG): a microstratigraphic perspective. Quaternary International, 166, 15–28.CrossRefGoogle Scholar
  17. Neymark, L. A., Amelin, Y. V., and Paces, J. B., 2000. 206Pb-230Th-234U-238U and 207Pb-235U geochronology of quaternary opal, Yucca Mountain, Nevada. Geochimica et Cosmochimica Acta, 64, 2913–2928.CrossRefGoogle Scholar
  18. Neymark, L. A., and Paces, J. B., 2000. Consequences of slow growth for 230Th/U dating of quaternary opals, Yucca Mountain, Nevada, USA. Chemical Geology, 164, 143–160.CrossRefGoogle Scholar
  19. Neymark, L. A., Paces, J. B., and Amelin, Y. V., 2003. Reliability of U-Th-Pb dating of secondary silica at Yucca Mountain, Nevada. In High-Level Radioactive Waste Management, Proceedings of the Tenth International Conference, Las Vegas March 30 – April 2, 2003, American Nuclear Society, LaGrange Park, pp. 1–12.Google Scholar
  20. Paces, J. B., Neymark, L. A., Marshall, B. D., Whelan, J. F., and Peterman, Z. E., 2001. Ages and origins of calcite and opal in the exploratory studies facility tunnel, Yucca Mountain, Nevada. U.S. Geological Survey Water-Resources Investigations Report, 01-4049, 95 p.Google Scholar
  21. Paces, J. B., Neymark, L. A., Whelan, J. F., Wooden, J. L., Lund, S. P., and Marshall, B. D., 2010. Limited hydrologic response to Pleistocene climate change in deep vadose zones — Yucca Mountain, Nevada. Earth and Planetary Science Letters, 300, 287–298.CrossRefGoogle Scholar
  22. Paces, J. B., Neymark, L. A., Wooden, J. L., and Persing, H. M., 2004. Improved spatial resolution for U-series dating of opal at Yucca Mountain, Nevada, USA, using ion-microprobe and microdigestion methods. Geochimica et Cosmochimica Acta, 68, 1591–1606.CrossRefGoogle Scholar
  23. Porcelli, D., 2008. Investigating groundwater processes using U- and Th-series nuclides. In Krishnaswami, S., and Cochran, J. K. (eds.), U/Th Series Radionuclides in Aquatic Systems. Radioactivity in the Environment, Vol. 13, pp. 105–153.CrossRefGoogle Scholar
  24. Schwarcz, H. P., and Latham, A. G., 1989. Dirty calcites 1. Uranium-series dating of contaminated soils using leachates alone. Chemical Geology, 80, 35–43.Google Scholar
  25. Smith, D. K., 1998. Opal, cristobalite, and tridymite: noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography. Powder Diffraction, 13, 2–19.CrossRefGoogle Scholar
  26. Stirling, C. H., Lee, D.–. C., Christensen, J. N., and Halliday, A. N., 2000. High-precision in situ 238U–234U–230Th isotopic analysis using laser ablation multiple-collector ICPMS. Geochimica et Cosmochimica Acta, 64, 3737–3750.CrossRefGoogle Scholar
  27. Szabo, B. J., and Kyser, T. K., 1985. Uranium, thorium isotopic analyses and uranium-series ages of calcite and opal, and stable isotopic compositions of calcite from drill cores UE25a#1, USW G-2 and USW G-3/GU-3, Yucca Mountain, Nevada. U.S. Geological Survey Open-File Report, 85224, 25 p.Google Scholar
  28. Szabo, B. J., and Kyser, T. K., 1990. Ages and stable-isotope compositions of secondary calcite and opal in drill cores from tertiary volcanic rocks of the Yucca Mountain area, Nevada. Geological Society of America Bulletin, 102, 1714–1719.CrossRefGoogle Scholar
  29. Whelan, J. F., Paces, J. B., and Peterman, Z. E., 2002. Physical and stable-isotope evidence for formation of secondary calcite and silica in the unsaturated zone, Yucca Mountain, Nevada. Applied Geochemistry, 17, 735–750.CrossRefGoogle Scholar
  30. Winograd, I. J., Landwehr, J. M., Coplen, T. B., Sharpe, W. D., Riggs, A. C., Ludwig, K. R., and Kolesar, P. T., 2006. Devils Hole, Nevada, δ18O record extended to the mid-Holocene. Quaternary Research, 66, 202–212.CrossRefGoogle Scholar
  31. Zielinski, R. A., 1977. Uranium mobility during interaction of rhyolite glass with alkaline solutions: Dissolution of glass. U.S. Geological Survey Open-File Report, 77744, 26 p.Google Scholar
  32. Zielinski, R. A., 1980. Uranium in secondary silica: a possible exploration guide. Economic Geology, 75, 592–602.CrossRefGoogle Scholar

Copyright information

© Springer Science Business Media Dordrecht (outside the USA) 2014

Authors and Affiliations

  1. 1.Geosciences and Environmental Change Science CenterU.S. Geological Survey, Denver Federal CenterDenverUSA