Skip to main content

Uranium–Lead, Extraterrestrial, Early Solar System

  • Living reference work entry
  • First Online:
  • 361 Accesses

Synonyms

Uranium–lead cosmochronology

Definition

The science of relating events that transformed a cloud of interstellar gas to our solar system to time, by means of using decay of uranium isotopes 238U and 235U to lead isotopes 206Pb and 207Pb.

Introduction

Stars and their planetary systems form by gravitational collapse of dense parts in large interstellar molecular clouds. It is thought that, about 4.57 billion years ago, our solar system formed by a similar process. The early history of our solar system cannot be observed directly, but it is recorded in the very early minerals and rocks that were removed from the ongoing process of accretion before formation of the planets, and thus escaped geological reworking. These primitive rocks are preserved in several non-planetary environments – in asteroids that experienced only moderate heating, in comets – and as interplanetary dust particles floating in space. The asteroids that were extensively melted are thought to be the sources of...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Allègre, C. J., Manhès, G., and Göpel, C., 1995. The age of the Earth. Geochimica et Cosmochimica Acta, 59, 1445–1456.

    Article  Google Scholar 

  • Amelin, Y., 2008. U–Pb ages of angrites. Geochimica et Cosmochimica Acta, 72, 221–232.

    Article  Google Scholar 

  • Amelin, Y., and Ireland, T. R., 2013. Dating the oldest rocks and minerals in the early Solar System. Elements, 9, 39–44.

    Article  Google Scholar 

  • Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A., 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 1678–1683.

    Article  Google Scholar 

  • Amelin, Y., Ghosh, A., and Rotenberg, E., 2005. Unraveling the evolution of chondrite parent asteroids by precise U-Pb dating and thermal modelling. Geochimica et Cosmochimica Acta, 69, 505–518.

    Article  Google Scholar 

  • Amelin, Y., Connelly, J., Zartman, R. E., Chen, J. H., Göpel, C., and Neymark, L. A., 2009. Modern U–Pb chronometry of meteorites: advancing to higher time resolution reveals new problems. Geochimica et Cosmochimica Acta, 73, 5212–5223.

    Article  Google Scholar 

  • Amelin, Y., Kaltenbach, A., Iizuka, T., Stirling, C. H., Ireland, T. R., Petaev, M., and Jacobsen, S. B., 2010. U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343–350.

    Article  Google Scholar 

  • Amelin, Y., Sapah, M. S., Cooke, I., Stirling, C. H., Kaltenbach, A., 2013. U-Th-Pb systematics of CAIs from CV chondrite Northwest Africa 4502. 44th Lunar and Planetary Science Conference, Abstract # 2690.

    Google Scholar 

  • Bouvier, A., Spivak-Birndorf, L. J., Brennecka, G. A., and Wadhwa, M., 2011. New constraints on early solar system chronology from Al–Mg and U–Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976. Geochimica et Cosmochimica Acta, 75, 5310–5323.

    Article  Google Scholar 

  • Bouvier A. and Wadhwa M., 2010. The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637–641.

    Article  Google Scholar 

  • Brennecka, G. A., and Wadhwa, M., 2012. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proceedings of the National Academy of Sciences, 109, 9299–9303.

    Article  Google Scholar 

  • Brennecka, G. A., Weyer, S., Wadhwa, M., Janney, P. E., Zipfel, J., and Anbar, A. D., 2010. 238U/235U variations in meteorites: extant 247Cm and implications for Pb-Pb dating. Science, 327, 449–451.

    Article  Google Scholar 

  • Chen, J. H., and Tilton, G. R., 1976. Isotopic lead investigations of the Allende carbonaceous chondrite. Geochimica et Cosmochimica Acta, 40, 635–643.

    Article  Google Scholar 

  • Cherniak, D. J., 2001. Pb diffusion in Cr diopside, augite, and enstatite and consideration of the dependence of cation diffusion in pyroxene on oxygen fugacity. Chemical Geology, 177, 381–397.

    Article  Google Scholar 

  • Cherniak, D. J., Lanford, W. A., and Ryerson, F. J., 1991. Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques. Geochimica et Cosmochimica Acta, 55, 1663–1673.

    Article  Google Scholar 

  • Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D., and Ivanova, M. A., 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651–655.

    Article  Google Scholar 

  • Grange, M. L., Pidgeon, R. T., Nemchin, A. A., Timms, N. E., and Meyer, C., 2013. Interpreting U–Pb data from primary and secondary features in lunar zircon. Geochimica et Cosmochimica Acta, 101, 112–132.

    Article  Google Scholar 

  • Jeffery, P. M., and Reynolds, J. H., 1961. Origin of excess Xe129 in stone meteorites. Journal of Geophysical Research, 66, 3582–3583.

    Article  Google Scholar 

  • Kleine, T., and Rudge, J. F., 2011. Chronometry of meteorites and the formation of the Earth and Moon. Elements, 7, 41–46.

    Article  Google Scholar 

  • Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A., 2005. Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989–992.

    Article  Google Scholar 

  • Lodders, K., 2003. Solar System abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 1220–1247.

    Article  Google Scholar 

  • Lugmair, G. W., and Galer, S. J. C., 1992. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta, 56, 1673–1694.

    Article  Google Scholar 

  • Lugmair, G. W., and Shukolyukov, A., 1998. Early solar system timescales according to 53Mn–53Cr systematics. Geochimica et Cosmochimica Acta, 62, 2863–2886.

    Article  Google Scholar 

  • Mattinson, J. M., 2013. Revolution and evolution: 100 years of U-Pb geochronology. Elements, 9, 53–57.

    Article  Google Scholar 

  • Nemchin, A., Timms, N., Pidgeon, R., Geisler, T., Reddy, S., and Meyer, C., 2009. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geoscience, 2, 133–136.

    Article  Google Scholar 

  • Patterson, C. C., 1955. The Pb207/Pb206 ages of some stone meteorites. Geochimica et Cosmochimica Acta 7, 151–153.

    Article  Google Scholar 

  • Patterson, C. C., 1956. Age of meteorites and the Earth. Geochimica et Cosmochimica Acta 10, 230–237.

    Article  Google Scholar 

  • Podosek, F. A., and Swindle, T. D., 1988. Extinct radionuclides. In Kerridge, J. F., and Matthew, M. S. (eds.), Meteorites and the Early Solar System. Tucson: University of Arizona Press, pp. 1093–1113.

    Google Scholar 

  • Tatsumoto, M., Unruh, D. M., and Desborough, G. A., 1976. U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil. Geochimica et Cosmochimica Acta, 40, 617–634.

    Article  Google Scholar 

  • Tilton, G. R., 1988. Age of the solar system. In Kerridge, J. F., and Matthew, M. S. (eds.), Meteorites and the Early Solar System. Tucson: University of Arizona Press, pp. 259–275.

    Google Scholar 

  • Tilton, G. R., Patterson, C., Brown, H., Inghram, M., Hayden, R., Hess, D., and Larsen, E., 1955. Isotopic composition and distribution of lead, uranium, and thorium in a Precambrian granite. Geological Society of America Bulletin, 66, 1131–1148.

    Article  Google Scholar 

  • Wadhwa, M., Amelin, Y., Bogdanovski, O., Shukolyukov, A., Lugmair, G. W., and Janney, P., 2009. Ancient relative and absolute ages for a basaltic meteorite: implications for timescales of planetesimals accretion and differentiation. Geochimica et Cosmochimica Acta, 73, 5189–5201.

    Article  Google Scholar 

  • Zhou, Q., Herd, C. D. K., Yin, Q.-Z., Li, X.-H., Wu, F.-Y., Li, Q.-L., Liu, Y., Tang, G.-Q., and McCoy, T. J., 2013. Geochronology of the Martian meteorite Zagami revealed by U–Pb ion probe dating of accessory minerals. Earth and Planetary Science Letters, doi:http://dx.doi.org/10.1016/j.epsl.2013.05.035i

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Amelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Amelin, Y. (2013). Uranium–Lead, Extraterrestrial, Early Solar System. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_204-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_204-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics