Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Uranium–Lead, Extraterrestrial, Early Solar System

  • Yuri Amelin
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_204-1



The science of relating events that transformed a cloud of interstellar gas to our solar system to time, by means of using decay of uranium isotopes 238U and 235U to lead isotopes 206Pb and 207Pb.


Stars and their planetary systems form by gravitational collapse of dense parts in large interstellar molecular clouds. It is thought that, about 4.57 billion years ago, our solar system formed by a similar process. The early history of our solar system cannot be observed directly, but it is recorded in the very early minerals and rocks that were removed from the ongoing process of accretion before formation of the planets, and thus escaped geological reworking. These primitive rocks are preserved in several non-planetary environments – in asteroids that experienced only moderate heating, in comets – and as interplanetary dust particles floating in space. The asteroids that were extensively melted are thought to be the sources of...


Solar System Thermal Ionization Mass Spectrometry Parent Body Protoplanetary Disk Ordinary Chondrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Allègre, C. J., Manhès, G., and Göpel, C., 1995. The age of the Earth. Geochimica et Cosmochimica Acta, 59, 1445–1456.CrossRefGoogle Scholar
  2. Amelin, Y., 2008. U–Pb ages of angrites. Geochimica et Cosmochimica Acta, 72, 221–232.CrossRefGoogle Scholar
  3. Amelin, Y., and Ireland, T. R., 2013. Dating the oldest rocks and minerals in the early Solar System. Elements, 9, 39–44.CrossRefGoogle Scholar
  4. Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A., 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 1678–1683.CrossRefGoogle Scholar
  5. Amelin, Y., Ghosh, A., and Rotenberg, E., 2005. Unraveling the evolution of chondrite parent asteroids by precise U-Pb dating and thermal modelling. Geochimica et Cosmochimica Acta, 69, 505–518.CrossRefGoogle Scholar
  6. Amelin, Y., Connelly, J., Zartman, R. E., Chen, J. H., Göpel, C., and Neymark, L. A., 2009. Modern U–Pb chronometry of meteorites: advancing to higher time resolution reveals new problems. Geochimica et Cosmochimica Acta, 73, 5212–5223.CrossRefGoogle Scholar
  7. Amelin, Y., Kaltenbach, A., Iizuka, T., Stirling, C. H., Ireland, T. R., Petaev, M., and Jacobsen, S. B., 2010. U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343–350.CrossRefGoogle Scholar
  8. Amelin, Y., Sapah, M. S., Cooke, I., Stirling, C. H., Kaltenbach, A., 2013. U-Th-Pb systematics of CAIs from CV chondrite Northwest Africa 4502. 44th Lunar and Planetary Science Conference, Abstract # 2690.Google Scholar
  9. Bouvier, A., Spivak-Birndorf, L. J., Brennecka, G. A., and Wadhwa, M., 2011. New constraints on early solar system chronology from Al–Mg and U–Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976. Geochimica et Cosmochimica Acta, 75, 5310–5323.CrossRefGoogle Scholar
  10. Bouvier A. and Wadhwa M., 2010. The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637–641.CrossRefGoogle Scholar
  11. Brennecka, G. A., and Wadhwa, M., 2012. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proceedings of the National Academy of Sciences, 109, 9299–9303.CrossRefGoogle Scholar
  12. Brennecka, G. A., Weyer, S., Wadhwa, M., Janney, P. E., Zipfel, J., and Anbar, A. D., 2010. 238U/235U variations in meteorites: extant 247Cm and implications for Pb-Pb dating. Science, 327, 449–451.CrossRefGoogle Scholar
  13. Chen, J. H., and Tilton, G. R., 1976. Isotopic lead investigations of the Allende carbonaceous chondrite. Geochimica et Cosmochimica Acta, 40, 635–643.CrossRefGoogle Scholar
  14. Cherniak, D. J., 2001. Pb diffusion in Cr diopside, augite, and enstatite and consideration of the dependence of cation diffusion in pyroxene on oxygen fugacity. Chemical Geology, 177, 381–397.CrossRefGoogle Scholar
  15. Cherniak, D. J., Lanford, W. A., and Ryerson, F. J., 1991. Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques. Geochimica et Cosmochimica Acta, 55, 1663–1673.CrossRefGoogle Scholar
  16. Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D., and Ivanova, M. A., 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651–655.CrossRefGoogle Scholar
  17. Grange, M. L., Pidgeon, R. T., Nemchin, A. A., Timms, N. E., and Meyer, C., 2013. Interpreting U–Pb data from primary and secondary features in lunar zircon. Geochimica et Cosmochimica Acta, 101, 112–132.CrossRefGoogle Scholar
  18. Jeffery, P. M., and Reynolds, J. H., 1961. Origin of excess Xe129 in stone meteorites. Journal of Geophysical Research, 66, 3582–3583.CrossRefGoogle Scholar
  19. Kleine, T., and Rudge, J. F., 2011. Chronometry of meteorites and the formation of the Earth and Moon. Elements, 7, 41–46.CrossRefGoogle Scholar
  20. Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A., 2005. Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989–992.CrossRefGoogle Scholar
  21. Lodders, K., 2003. Solar System abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 1220–1247.CrossRefGoogle Scholar
  22. Lugmair, G. W., and Galer, S. J. C., 1992. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta, 56, 1673–1694.CrossRefGoogle Scholar
  23. Lugmair, G. W., and Shukolyukov, A., 1998. Early solar system timescales according to 53Mn–53Cr systematics. Geochimica et Cosmochimica Acta, 62, 2863–2886.CrossRefGoogle Scholar
  24. Mattinson, J. M., 2013. Revolution and evolution: 100 years of U-Pb geochronology. Elements, 9, 53–57.CrossRefGoogle Scholar
  25. Nemchin, A., Timms, N., Pidgeon, R., Geisler, T., Reddy, S., and Meyer, C., 2009. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geoscience, 2, 133–136.CrossRefGoogle Scholar
  26. Patterson, C. C., 1955. The Pb207/Pb206 ages of some stone meteorites. Geochimica et Cosmochimica Acta 7, 151–153.CrossRefGoogle Scholar
  27. Patterson, C. C., 1956. Age of meteorites and the Earth. Geochimica et Cosmochimica Acta 10, 230–237.CrossRefGoogle Scholar
  28. Podosek, F. A., and Swindle, T. D., 1988. Extinct radionuclides. In Kerridge, J. F., and Matthew, M. S. (eds.), Meteorites and the Early Solar System. Tucson: University of Arizona Press, pp. 1093–1113.Google Scholar
  29. Tatsumoto, M., Unruh, D. M., and Desborough, G. A., 1976. U-Th-Pb and Rb-Sr systematics of Allende and U-Th-Pb systematics of Orgueil. Geochimica et Cosmochimica Acta, 40, 617–634.CrossRefGoogle Scholar
  30. Tilton, G. R., 1988. Age of the solar system. In Kerridge, J. F., and Matthew, M. S. (eds.), Meteorites and the Early Solar System. Tucson: University of Arizona Press, pp. 259–275.Google Scholar
  31. Tilton, G. R., Patterson, C., Brown, H., Inghram, M., Hayden, R., Hess, D., and Larsen, E., 1955. Isotopic composition and distribution of lead, uranium, and thorium in a Precambrian granite. Geological Society of America Bulletin, 66, 1131–1148.CrossRefGoogle Scholar
  32. Wadhwa, M., Amelin, Y., Bogdanovski, O., Shukolyukov, A., Lugmair, G. W., and Janney, P., 2009. Ancient relative and absolute ages for a basaltic meteorite: implications for timescales of planetesimals accretion and differentiation. Geochimica et Cosmochimica Acta, 73, 5189–5201.CrossRefGoogle Scholar
  33. Zhou, Q., Herd, C. D. K., Yin, Q.-Z., Li, X.-H., Wu, F.-Y., Li, Q.-L., Liu, Y., Tang, G.-Q., and McCoy, T. J., 2013. Geochronology of the Martian meteorite Zagami revealed by U–Pb ion probe dating of accessory minerals. Earth and Planetary Science Letters, doi:http://dx.doi.org/10.1016/j.epsl.2013.05.035i

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia