Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Tsunamigenic Sediments

  • Gloria I. López
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_199-1



Sediments eroded, reworked, transported, and deposited by a tsunami often generate deposits referred to as of tsunamigenic origin, hence tsunamigenic sediments. They are a result of tsunami inundation pending coastal conditions and availability of material. Tsunami deposits contain “exotic” materials of allochthonous provenance when compared to the sediments present at the location the tsunami struck.

Tsunami deposits are considered primary paleoseismic evidence when generated coseismically and can also be defined as off-fault instantaneous stratigraphic expressions of tectonic deformation (McCalpin 2009).

Tsunami is a Japanese word meaning “harbor wave” and was adopted by the scientific community to define long-period waves generated by the sudden vertical displacement of a large volume of water within a water basin (e.g., estuary, lake, sea, ocean).

Geological Signatures

In order to understand the significance of...


Tsunami Wave Optically Stimulate Luminescence Tsunami Deposit Tsunami Event Indian Ocean Tsunami 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Abrantes, F., Lebreiro, S., Gil, I., Rodrigues, T., Bartels-Jónsdóttir, H., Oliveira, P., Kissel, C., and Grimalt, J. O., 2005. Shallow marine sediment cores record climate variability and earthquake activity off Lisbon (Portugal) for the last 2000 years. Quaternary Science Reviews, 24, 2477–2494.CrossRefGoogle Scholar
  2. Atwater, B. F., Nelson, A. R., Clague, J. J., Carver, G. A., Yamaguchi, D. K., Bobrowsky, P. T., Bourgeois, J., Darienzo, M. E., Grand, W. C., Hemphill-Haley, E., Kelsey, H. M., Jacoby, G. C., Nishenko, S. P., Palmer, S. P., Peterson, C. D., and Reinhart, M. A., 1995. Summary of coastal geologic evidence for past great earthquakes at the Cascadia Subduction Zone. Earthquake Spectra, 11, 1–18.CrossRefGoogle Scholar
  3. Atwater, B. F., Satoko, M.-R., Kenji, S., Yoshinobu, T., Kazue, U., and Yamaguchi, D. K., 2005. The Orphan Tsunami of 1700: Japanese Clues to a Parent Earthquake in North America. U.S. Geological Survey, p.133.Google Scholar
  4. Banerjee, D., Murray, A. S., and Foster, I. D. L., 2001. Scilly Isles, UK: optical dating of a possible tsunami deposit from the 1755 Lisbon earthquake. Quaternary Science Reviews, 20, 715–718.CrossRefGoogle Scholar
  5. Bondevik, S., Mangerud, J., Dawson, S., Dawson, A., and Lohne, Ø., 2005. Evidence for three North Sea tsunamis at the Shetland Islands between 8000 and 1500 years ago. Quaternary Science Reviews, 24, 1757–1775.Google Scholar
  6. Chagué-Goff, C., Schneider, J.-L., Goff, J. R., Dominey-Howes, D., and Strotz, L., 2011. Expanding the proxy toolkit to help identify past events – lessons from the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami. Earth-Science Reviews, 107, 107–122.CrossRefGoogle Scholar
  7. Clague, J. J., Bobrowsky, P. T., and Hutchinson, I., 2000. A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard. Quaternary Science Reviews, 19, 849–863.CrossRefGoogle Scholar
  8. De Martini, P. M., Barbano, M. S., Smedile, A., Gerardi, F., Pantosti, D., Del Carlo, P., and Pirrotta, C., 2010. A unique 4000 year long geological record of multiple tsunami inundations in the Augusta Bay (Eastern Sicily, Italy). Marine Geology, 276, 42–57.CrossRefGoogle Scholar
  9. Dominey-Howes, D. T. M., Humphreys, G. S., and Hesse, P. P., 2006. Tsunami and palaeo-tsunami deposit signatures and their potential value in understanding the Late Holocene tsunami record. The Holocene, 16, 1095–1107.CrossRefGoogle Scholar
  10. Donato, S. V., Reinhardt, E. G., Boyce, J. I., Rothaus, R., and Vosmer, T., 2008. Identifying tsunami deposits using bivalve shell taphonomy. Geology, 36, 199–202.CrossRefGoogle Scholar
  11. Einsele, G., Chough, S. K., and Shiki, T., 1996. Depositional events and their records – an introduction. Sedimentary Geology, 104, 1–9.CrossRefGoogle Scholar
  12. Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E., and Kulikov, E. A., 2005. The Grand Banks landslide-generated tsunami of November 18, 1929; preliminary analysis and numerical modeling. Marine Geology 45–57.Google Scholar
  13. Fujiwara, O., Masuda, F., Sakai, T., Irizuki, T., and Fuse, K., 2000. Tsunami deposits in Holocene bay mud in southern Kanto region, Pacific coast of central Japan. Sedimentary Geology, 135, 219–230.CrossRefGoogle Scholar
  14. Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B., and Dominey-Howes, D., 2012. Progress in palaeotsunami research. Sedimentary Geology, 243–244, 70–88.CrossRefGoogle Scholar
  15. Huntley, D. J., and Clague, J. J., 1996. Optical dating of tsunami-laid sands. Quaternary Research, 46, 127–140.CrossRefGoogle Scholar
  16. Huntley, D. J., Godfrey-Smith, D. I., and Thewalt, M. L. W., 1985. Optical dating of sediments. Nature, 313, 105–107.CrossRefGoogle Scholar
  17. Kunz, A., Frechen, M., Ramesh, R., and Urban, B., 2010. Revealing the coastal event-history of the Andaman Islands (Bay of Bengal) during the Holocene using radiocarbon and OSL dating. Earth and Environmental Science, 99, 1741–1761.Google Scholar
  18. Lawton, T. F., Shipley, K. W., Aschoff, J. L., Giles, K. A., and Vega, F. J., 2005. Basin-ward transport of Chicxulub ejecta by tsunami-induced backflow, La Popa basin, northeastern Mexico, and its implications for distribution of impact-related deposits flanking the Gulf of Mexico. Geology, 33, 81–84.CrossRefGoogle Scholar
  19. López, G. I., 2012. Evidence for mid- to late-Holocene palaeotsunami deposits, Kakawis Lake, Vancouver Island, British Columbia. Natural Hazards, 60, 43–68.CrossRefGoogle Scholar
  20. López, G. I., and Bobrowsky, P. T., 2001. A 14,000 year-old-record from a coastal freshwater lake: sedimentological evidence for tsunamigenic events on the west coast of Vancouver Island, British Columbia, Canada. In Whitney, R. L., Dunlap, M., and Ventenbergs, K. (eds.), International Tsunami Symposium. Seattle/Washington, DC: IUGG Tsunami Commission, NOAA, USGS, pp. 491–500.Google Scholar
  21. McCalpin, J. P., 2009, Paleoseismology. International Geophysics Series, v. 95, Academic Press, 613 p.Google Scholar
  22. Michetti, A. M., and Hancock, P. L., 1997. Paleoseismology: understanding past earthquakes using quaternary geology. Journal of Geodynamics, 24, 3–10.CrossRefGoogle Scholar
  23. Miller, C. S., Leroy, S. A. G., Izon, G., Lahijani, H. A. K., Marret, F., Cundy, A.B., and Teasdale, P.A., 2013. Palynology: a tool to identify abrupt events? An example from Chabahar Bay, southern Iran. Marine Geology, 337, 195–201.Google Scholar
  24. Naidu, A. S., Finney, B. P., and Baskaran, M., 1999. 210-Pb and 137-Cs based sediment accumulation rates in inner shelves and coastal lakes of Subarctic and Arctic Alaska: a synthesis. In Bruns, P., and Hass, H. C. (eds.), On the Determination of Sediment Accumulation Rates. Totton: GeoResearch Forum/Trans Tech Publications, pp. 185–196.Google Scholar
  25. Ollerhead, J., Huntley, D. J., Nelson, A. R., and Kelsey, H. M., 2001. Optical dating of tsunami-laid sand from an Oregon coastal lake. Quaternary Science Reviews, 20, 1915–1926.CrossRefGoogle Scholar
  26. Prendergast, A. L., Cupper, M. L., Jankaew, K., and Sawai, Y., 2012. Indian Ocean tsunami recurrence from optical dating of tsunami sand sheets in Thailand. Marine Geology, 295–298, 20–27.CrossRefGoogle Scholar
  27. Ramírez-Herrera, M.-T., Lagos, M., Hutchinson, I., Kostoglodov, V., Machain, M. L., Caballero, M., Goguitchaichvili, A., Aguilar, B., Chagué-Goff, C., Goff, J., Ruiz-FernÃndez, A.-C., Ortiz, M., Nava, H., Bautista, F., López, G. I., and Quintana, P., 2012. Extreme wave deposits on the Pacific coast of Mexico: tsunamis or storms? — A multi-proxy approach. Geomorphology, 139–140, 360–371.Google Scholar
  28. Reinhardt, E. G., Goodman, B. N., Boyce, J. I., Lopez, G., van Hengstum, P., Rink, W. J., Mart, Y., and Raban, A., 2006. The tsunami of 13 December A.D. 115 and the destruction of Herod the Great’s harbor at Caesarea Maritima, Israel. Geology, 34, 1061–1064.CrossRefGoogle Scholar
  29. Sakuna, D., Szczucinski, W., Feldens, P., Schwarzer, K., and Khokiattiwong, S., 2012. Sedimentary deposits left by the 2004 Indian Ocean tsunami on the inner continental shelf offshore of Khao Lak, Andaman Sea (Thailand). Earth, Planets and Space, 64, 931–943.CrossRefGoogle Scholar
  30. Shiki, T., 1996. Reading of the trigger records of sedimentary events – a problem for future studies. Sedimentary Geology, 104, 249–255.CrossRefGoogle Scholar
  31. Shiki, T., Cita, M. B., and Gorsline, D. S., 2000. Sedimentary features of seismites, seismo-turbidites and tsunamiites – an introduction. Sedimentary Geology, 135, vii–ix.CrossRefGoogle Scholar
  32. Shiki, T., Tsuji, Y., Yamazaki, T., and Minoura, K., 2008. Tsunamiites – Features and Implications. Oxford: Elsevier, p. 411.Google Scholar
  33. Smedile, A., De Martini, P. M., Pantosti, D., Bellucci, L., Del Carlo, P., Gasperini, L., Pirrotta, C., Polonia, A., and Boschi, E., 2011. Possible tsunamis signatures from an integrated study in the Augusta Bay offshore (Eastern Sicily–Italy). Marine Geology, 281, 1–13.CrossRefGoogle Scholar
  34. Switzer, A. D., and Jones, B. G., 2008. Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm? The Holocene, 18, 787–803.CrossRefGoogle Scholar
  35. Tada, R., Nakano, Y., Iturralde-Vinent, M. A., Yamamoto, S., Kamata, T., Tajika, E., Toyoda, K., Kiyokawa, S., Delgado, D. G., Oji, T., Goto, K., Takayama, H., et al., 2002. Complex tsunami waves suggested by the Cretaceous-Tertiary boundary deposit at the Moncada section, western Cuba. Geological Society of America, Special Paper, 356, 109–123.Google Scholar
  36. Van der Bergh, G. D., Boer, W., Haas, H., van Weering, T., and van Wijhe, R., 2003. Shallow marine tsunami deposits in Telik Banten (NW Java, Indonesia), generated by the 1883 Krakatau eruption. Marine Geology, 197, 13–34.CrossRefGoogle Scholar
  37. Wan, G. J., Santshi, P. H., Sturm, M., Farrenkothen, K., Lueck, A., Werth, E., and Schuler, C., 1987. Natural (210-Pb, 7-Be) and fallout (137-Cs, 239-240-Pu, 90-Sr) radionuclides as geochemical tracers of sedimentation in Greifensee, Switzerland. Chemical Geology, 63, 181–196.CrossRefGoogle Scholar
  38. Woodward, R. N., 1964. 90Sr and 137Cs in Antarctic snows. Nature, 204, 4965.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Luminescence Laboratory, Centro Nacional de Investigación sobre la Evolución Humana CENIEHBurgosSpain
  2. 2.Leon Recanati Institute for Maritime StudiesUniversity of HaifaHaifaIsrael