Skip to main content

Uranium–Lead Dating

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Definition

UraniumLead dating is the geological age-determination method that uses the radioactive decay of uranium (U) isotopes (238U, 235U, and also in this entry 232Th) into stable isotopes of lead (Pb) (206Pb, 207Pb, and 208Pb, respectively). U–Pb geochronology is the science of both the methodology but also the application of these methods to geological problems.

U–Pb Decay System and Age Calculations

The accumulation of Pb in U-bearing minerals according to known decay rates of radioactive parent isotopes of U and Th forms the basis of this dating method. One measures the amount of radiogenic (i.e., produced from radioactive decay) Pb relative to the amount of radioactive parent isotope. As there are three radioactive isotopes (238U, 235U, and 232Th) that decay into stable “daughter” isotopes of Pb, one can calculate three ages in this manner, two of which have the same (i.e., U and Pb) elements forming parent and daughter. The decay systems, decay constants (λ), and half-lives...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Amelin, Y., and Ireland, T. R., 2013. Dating the oldest rocks and minerals in the solar system. Elements, 9, 39–44.

    Article  Google Scholar 

  • Anczkiewicz, R., Oberli, F., Burg, J. P., Villa, I. M., Meier, M., and Gunther, D., 2001. Timing of normal faulting along the Indus suture in Pakistan Himalaya and a case of major 231Pa/235U initial disequilibrium in zircon. Earth and Planetary Science Letters, 191, 101–114.

    Article  Google Scholar 

  • Boltwood, B. B., 1907. On the ultimate disintegration products of the radioactive elements, part II: the disintegration products of uranium. American Journal of Science, 23, 77–88.

    Google Scholar 

  • Bracciali, L., Parrish, R. R., Horstwood, M. S. A., Condon, D. J., and Najman, Y., 2013. U–Pb LA-(MC)-ICP-MS dating of rutile: new reference materials and applications to sedimentary provenance. Chemical Geology, 347, 82–101.

    Article  Google Scholar 

  • Compston, W., Williams, I. S., and Meyer, C., 1984. U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high resolution ion microprobe, proceedings of the 14th lunar and planetary science conference, part 2. Journal of Geophysical Research, 89, B525–B534.

    Article  Google Scholar 

  • Copeland, P., Parrish, R. R., and Harrison, T. M., 1988. Identification of inherited radiogenic Pb in monazite and its implications for U–Pb systematics. Nature, 333, 760–763.

    Article  Google Scholar 

  • Corfu, F., Hanchar, J. M., Hoskin, P. W. O., and Kinny, P., 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53, 469–500.

    Article  Google Scholar 

  • Cottle, J. M., Searle, M. P., Horstwood, M. S. A., and Waters, D. J., 2009. Timing of mid-crustal metamorphism, melting and deformation in the Mt. Everest region of southern Tibet revealed by U(−Th)–Pb geochronology. Journal of Geology, 117, 643–666.

    Article  Google Scholar 

  • Davis, D. W., Amelin, Y., Nowell, G. M., and Parrish, R. R., 2005. Hf isotopes in zircon from the western superior province, Canada: implications for Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Research, 140(3–4), 132–156.

    Article  Google Scholar 

  • Gulson, B., and Krogh, T., 1973. Old lead component in the young Bergell Massif, Southeast Swiss Alps. Contributions to Mineralogy and Petrology, 40, 239–252.

    Article  Google Scholar 

  • Heaman, L. M., and LeCheminant, A. N., 1993. Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chemical Geology, 110, 95–126.

    Article  Google Scholar 

  • Heaman, L., and Parrish, R. R., 1991. U–Pb geochronology of accessory minerals. In Applications of Radiogenic Isotope Systems to Problems in Geology. Short course handbook, J Ludden and L Heaman, eds., Mineralogical Association of Canada, Vol. 19, pp. 59–102.

    Google Scholar 

  • Hiess, J., Condon, D. J., McLean, N., and Noble, S. R., 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610–1614.

    Article  Google Scholar 

  • Hoffman, P., 1988. United plates of America, the birth of a craton: early proterozoic assembly and growth of laurentia. Annual Review of Earth and Planetary Sciences, 16, 543–603.

    Article  Google Scholar 

  • Holmes, A., 1911. The association of lead with uranium in rock minerals and its application to measurement of geological time. Proceedings of the Royal Society of London, 85, 248–256.

    Article  Google Scholar 

  • Horstwood, M. S. A., Parrish, R. R., Nowell, G. M., and Noble, S. R., 2003. Accessory mineral U–Th–Pb geochronology by laser-ablation plasma-ionisation multi-collector mass spectrometry (LA-PIMMS). Journal of Analytical Atomic Spectrometry, 2003(18), 837–846.

    Article  Google Scholar 

  • Krogh, T. E., 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta, 37, 485–494.

    Article  Google Scholar 

  • Krogh, T. E., 1982. Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta, 46, 637–649.

    Article  Google Scholar 

  • Ludwig, K., 1991. ISOPLOT – A Plotting and Regression Program for Radiogenic Isotope Data. Denver: US Geological Survey. US geological survey open file report, 91–445.

    Google Scholar 

  • Mattinson, J. M., 1973. Anomalous isotopic composition of lead in young zircons. Carnegie Institution of Washington Yearbook, 72, 613–616.

    Google Scholar 

  • Mattinson, J., 2005. Zircon U–Pb chemical abrasion (CA-TIMS) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47–66.

    Article  Google Scholar 

  • Montel, J.-M., Foret, S., le Veschambre, M., Nicollet, C., and Provost, A., 1996. Electron microprobe dating of monazite. Chemical Geology, 131, 37–53.

    Article  Google Scholar 

  • Najman, Y., Bickle, M., Carter, A., Garzanti, F., Wilbrans, J., Willett, S., Oliver, G., Parrish, R. R., Akhter, S. H., Allen, R., Ando, S., Chisty, E., Reisberg, L., and Vessoli, G., 2008. The Palaeogene record of Himalayan erosion. Earth and Planetary Science Letters, 273, 1–14.

    Article  Google Scholar 

  • Nemchin, A., Timms, N., Pidgeon, R., Geisler, T., Reddy, S., and Meyer, C., 2009. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geoscience, 2, 133–138.

    Article  Google Scholar 

  • Nier, A. O. C., 1939. The isotopic composition of uranium and the half-lives of the uranium isotopes I. Physics Review, 55, 150.

    Article  Google Scholar 

  • Nier, A. O. C., Thompson, R. W., and Murphy, B. F., 1941. The isotopic composition of lead and the measurement of geological time. Physics Review, 60, 112.

    Article  Google Scholar 

  • Oberli, F., Meier, M., Berger, A., Rosenberg, C. L., and Gieré, R., 2004. U–Th–Pb and 230Th/238U disequilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochimica et Cosmochimica Acta, 68, 2543–2560.

    Article  Google Scholar 

  • Parrish, R. R., 1990. U–Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 27, 1431–1450.

    Article  Google Scholar 

  • Parrish, R. R., 2001. The response of mineral chronometers to metamorphism and deformation in orogenic belts. In Miller, J. A., Holdsworth, R. E., Buick, I. S., and Hand, M. (eds.), Continental Recactivation and Reworking. London: Geological Society. Special publications, Vol. 184, pp. 289–301.

    Google Scholar 

  • Parrish, R. R., and Krogh, T. E., 1987. Synthesis and purification of 205Pb for U–Pb for geochronology. Chemical Geology (Isotope Geoscience Section), 66, 103–110.

    Article  Google Scholar 

  • Patterson, C., 1956. Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10, 230–237.

    Article  Google Scholar 

  • Rasbury, E. T., Hanson, G. N., Meyers, W. J., and Saller, A. H., 1997. Dating the time of sedimentation using U–Pb ages for paleosol calcite. Geochimica et Cosmochimica Acta, 61, 1525–1529.

    Article  Google Scholar 

  • Richards, D. A., Bottrell, S. H., Cliff, R. A., Ströhle, K., and Rowe, P. J., 1998. U–Pb dating of a speleothem of quaternary age. Geochimica et Cosmochimica Acta, 62, 3683–3688.

    Article  Google Scholar 

  • Roddick, J. C., Loveridge, W. D., and Parrish, R. R., 1987. Precise U/Pb dating of zircon of the sub-nanogram Pb Level. Chemical Geology (Isotope Geoscience Section), 66, 111–121.

    Article  Google Scholar 

  • Schärer, U., 1984. The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters, 67, 191–204.

    Article  Google Scholar 

  • Smith, H. A., and Barreiro, B., 1990. Monazite U–Pb dating of staurolite grade metamorphism in pelitic schists. Contributions to Mineralogy and Petrology, 105, 602–615.

    Article  Google Scholar 

  • Smith, P. E., and Farquhar, R. M., 1989. Direct dating of Phanerozoic sediments by the 238U–206Pb method. Nature, 341, 518–521.

    Article  Google Scholar 

  • Soddy, F., 1913. Intra-atomic charge. Nature, 92, 399–400.

    Article  Google Scholar 

  • Suzuki, K., Adachi, M., and Kajizuka, I., 1994. Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth and Planetary Science Letters, 128, 391–405.

    Article  Google Scholar 

  • Tera, F., and Wasserburg, G., 1972. U–Th–Pb systematics in lunar highland samples from the Luna 16 and Apollo 16 missions. Earth and Planetary Science Letters, 17, 36–51.

    Article  Google Scholar 

  • Tilton, G. R., Patterson, C., Brown, H., Inghram, M., Hayden, R., Hess, D., and Larsen, E., 1955. Isotopic composition and distribution of lead, uranium, and thorium in a Precambrian granite. Geological Society of America Bulletin, 66, 1131–1148.

    Article  Google Scholar 

  • Wetherill, G., 1956. Discordant uranium-lead ages, I, transactions. American Geophysical Union, 37, 320–326.

    Article  Google Scholar 

  • Williams, M. L., and Jercinovic, M. J., 2002. Microprobe monazite geochronology: putting absolute time into microstructural analysis. Journal of Structural Geology, 24, 1013–1028.

    Article  Google Scholar 

  • Woodhead, J., Hellstrom, J., Pickering, R., Drysdale, R., Paul, B., and Bajo, P., 2012. U and Pb variability in older speleothems and strategies for their chronology. Quaternary Geochronology, 14, 105–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall Parrish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Parrish, R. (2014). Uranium–Lead Dating. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_193-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_193-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics