Definition
Uranium–Lead dating is the geological age-determination method that uses the radioactive decay of uranium (U) isotopes (238U, 235U, and also in this entry 232Th) into stable isotopes of lead (Pb) (206Pb, 207Pb, and 208Pb, respectively). U–Pb geochronology is the science of both the methodology but also the application of these methods to geological problems.
U–Pb Decay System and Age Calculations
The accumulation of Pb in U-bearing minerals according to known decay rates of radioactive parent isotopes of U and Th forms the basis of this dating method. One measures the amount of radiogenic (i.e., produced from radioactive decay) Pb relative to the amount of radioactive parent isotope. As there are three radioactive isotopes (238U, 235U, and 232Th) that decay into stable “daughter” isotopes of Pb, one can calculate three ages in this manner, two of which have the same (i.e., U and Pb) elements forming parent and daughter. The decay systems, decay constants (λ), and half-lives...
Bibliography
Amelin, Y., and Ireland, T. R., 2013. Dating the oldest rocks and minerals in the solar system. Elements, 9, 39–44.
Anczkiewicz, R., Oberli, F., Burg, J. P., Villa, I. M., Meier, M., and Gunther, D., 2001. Timing of normal faulting along the Indus suture in Pakistan Himalaya and a case of major 231Pa/235U initial disequilibrium in zircon. Earth and Planetary Science Letters, 191, 101–114.
Boltwood, B. B., 1907. On the ultimate disintegration products of the radioactive elements, part II: the disintegration products of uranium. American Journal of Science, 23, 77–88.
Bracciali, L., Parrish, R. R., Horstwood, M. S. A., Condon, D. J., and Najman, Y., 2013. U–Pb LA-(MC)-ICP-MS dating of rutile: new reference materials and applications to sedimentary provenance. Chemical Geology, 347, 82–101.
Compston, W., Williams, I. S., and Meyer, C., 1984. U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high resolution ion microprobe, proceedings of the 14th lunar and planetary science conference, part 2. Journal of Geophysical Research, 89, B525–B534.
Copeland, P., Parrish, R. R., and Harrison, T. M., 1988. Identification of inherited radiogenic Pb in monazite and its implications for U–Pb systematics. Nature, 333, 760–763.
Corfu, F., Hanchar, J. M., Hoskin, P. W. O., and Kinny, P., 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53, 469–500.
Cottle, J. M., Searle, M. P., Horstwood, M. S. A., and Waters, D. J., 2009. Timing of mid-crustal metamorphism, melting and deformation in the Mt. Everest region of southern Tibet revealed by U(−Th)–Pb geochronology. Journal of Geology, 117, 643–666.
Davis, D. W., Amelin, Y., Nowell, G. M., and Parrish, R. R., 2005. Hf isotopes in zircon from the western superior province, Canada: implications for Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Research, 140(3–4), 132–156.
Gulson, B., and Krogh, T., 1973. Old lead component in the young Bergell Massif, Southeast Swiss Alps. Contributions to Mineralogy and Petrology, 40, 239–252.
Heaman, L. M., and LeCheminant, A. N., 1993. Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chemical Geology, 110, 95–126.
Heaman, L., and Parrish, R. R., 1991. U–Pb geochronology of accessory minerals. In Applications of Radiogenic Isotope Systems to Problems in Geology. Short course handbook, J Ludden and L Heaman, eds., Mineralogical Association of Canada, Vol. 19, pp. 59–102.
Hiess, J., Condon, D. J., McLean, N., and Noble, S. R., 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610–1614.
Hoffman, P., 1988. United plates of America, the birth of a craton: early proterozoic assembly and growth of laurentia. Annual Review of Earth and Planetary Sciences, 16, 543–603.
Holmes, A., 1911. The association of lead with uranium in rock minerals and its application to measurement of geological time. Proceedings of the Royal Society of London, 85, 248–256.
Horstwood, M. S. A., Parrish, R. R., Nowell, G. M., and Noble, S. R., 2003. Accessory mineral U–Th–Pb geochronology by laser-ablation plasma-ionisation multi-collector mass spectrometry (LA-PIMMS). Journal of Analytical Atomic Spectrometry, 2003(18), 837–846.
Krogh, T. E., 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta, 37, 485–494.
Krogh, T. E., 1982. Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta, 46, 637–649.
Ludwig, K., 1991. ISOPLOT – A Plotting and Regression Program for Radiogenic Isotope Data. Denver: US Geological Survey. US geological survey open file report, 91–445.
Mattinson, J. M., 1973. Anomalous isotopic composition of lead in young zircons. Carnegie Institution of Washington Yearbook, 72, 613–616.
Mattinson, J., 2005. Zircon U–Pb chemical abrasion (CA-TIMS) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47–66.
Montel, J.-M., Foret, S., le Veschambre, M., Nicollet, C., and Provost, A., 1996. Electron microprobe dating of monazite. Chemical Geology, 131, 37–53.
Najman, Y., Bickle, M., Carter, A., Garzanti, F., Wilbrans, J., Willett, S., Oliver, G., Parrish, R. R., Akhter, S. H., Allen, R., Ando, S., Chisty, E., Reisberg, L., and Vessoli, G., 2008. The Palaeogene record of Himalayan erosion. Earth and Planetary Science Letters, 273, 1–14.
Nemchin, A., Timms, N., Pidgeon, R., Geisler, T., Reddy, S., and Meyer, C., 2009. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geoscience, 2, 133–138.
Nier, A. O. C., 1939. The isotopic composition of uranium and the half-lives of the uranium isotopes I. Physics Review, 55, 150.
Nier, A. O. C., Thompson, R. W., and Murphy, B. F., 1941. The isotopic composition of lead and the measurement of geological time. Physics Review, 60, 112.
Oberli, F., Meier, M., Berger, A., Rosenberg, C. L., and Gieré, R., 2004. U–Th–Pb and 230Th/238U disequilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochimica et Cosmochimica Acta, 68, 2543–2560.
Parrish, R. R., 1990. U–Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 27, 1431–1450.
Parrish, R. R., 2001. The response of mineral chronometers to metamorphism and deformation in orogenic belts. In Miller, J. A., Holdsworth, R. E., Buick, I. S., and Hand, M. (eds.), Continental Recactivation and Reworking. London: Geological Society. Special publications, Vol. 184, pp. 289–301.
Parrish, R. R., and Krogh, T. E., 1987. Synthesis and purification of 205Pb for U–Pb for geochronology. Chemical Geology (Isotope Geoscience Section), 66, 103–110.
Patterson, C., 1956. Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10, 230–237.
Rasbury, E. T., Hanson, G. N., Meyers, W. J., and Saller, A. H., 1997. Dating the time of sedimentation using U–Pb ages for paleosol calcite. Geochimica et Cosmochimica Acta, 61, 1525–1529.
Richards, D. A., Bottrell, S. H., Cliff, R. A., Ströhle, K., and Rowe, P. J., 1998. U–Pb dating of a speleothem of quaternary age. Geochimica et Cosmochimica Acta, 62, 3683–3688.
Roddick, J. C., Loveridge, W. D., and Parrish, R. R., 1987. Precise U/Pb dating of zircon of the sub-nanogram Pb Level. Chemical Geology (Isotope Geoscience Section), 66, 111–121.
Schärer, U., 1984. The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters, 67, 191–204.
Smith, H. A., and Barreiro, B., 1990. Monazite U–Pb dating of staurolite grade metamorphism in pelitic schists. Contributions to Mineralogy and Petrology, 105, 602–615.
Smith, P. E., and Farquhar, R. M., 1989. Direct dating of Phanerozoic sediments by the 238U–206Pb method. Nature, 341, 518–521.
Soddy, F., 1913. Intra-atomic charge. Nature, 92, 399–400.
Suzuki, K., Adachi, M., and Kajizuka, I., 1994. Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth and Planetary Science Letters, 128, 391–405.
Tera, F., and Wasserburg, G., 1972. U–Th–Pb systematics in lunar highland samples from the Luna 16 and Apollo 16 missions. Earth and Planetary Science Letters, 17, 36–51.
Tilton, G. R., Patterson, C., Brown, H., Inghram, M., Hayden, R., Hess, D., and Larsen, E., 1955. Isotopic composition and distribution of lead, uranium, and thorium in a Precambrian granite. Geological Society of America Bulletin, 66, 1131–1148.
Wetherill, G., 1956. Discordant uranium-lead ages, I, transactions. American Geophysical Union, 37, 320–326.
Williams, M. L., and Jercinovic, M. J., 2002. Microprobe monazite geochronology: putting absolute time into microstructural analysis. Journal of Structural Geology, 24, 1013–1028.
Woodhead, J., Hellstrom, J., Pickering, R., Drysdale, R., Paul, B., and Bajo, P., 2012. U and Pb variability in older speleothems and strategies for their chronology. Quaternary Geochronology, 14, 105–113.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media Dordrecht
About this entry
Cite this entry
Parrish, R. (2014). Uranium–Lead Dating. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_193-1
Download citation
DOI: https://doi.org/10.1007/978-94-007-6326-5_193-1
Received:
Accepted:
Published:
Publisher Name: Springer, Dordrecht
Online ISBN: 978-94-007-6326-5
eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences