Skip to main content

Tephrochronology

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Synonyms

Chronostratigraphy; Stratigraphic correlation using tephra; Tephrostratigraphy

Definitions

Tephra. All the explosively erupted, unconsolidated pyroclastic products of a volcanic eruption.

Cryptotephra. Tephra-derived glass-shard and/or crystal concentration preserved in sediments or soils/paleosols but not visible as a layer to the naked eye.

Tephrostratigraphy. Study of sequences of tephra layers or cryptotephras (and associated deposits) and their lithologies, spatial distribution, stratigraphic relationships, and relative and numerical ages. Involves defining, describing, characterizing, and dating tephra layers or cryptotephra deposits in the field and laboratory as a basis for their correlation.

Tephrochronometry. Obtaining a numerical age or calendrical date for a tephra or cryptotephra deposit.

Tephrochronology sensu stricto.The use of primary tephra layers or cryptotephras as isochrons to connect and synchronize depositional sequences, or soils, and to transfer...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abbott, P. M., and Davies, S. M., 2012. Volcanism and the Greenland ice-cores: the tephra record. Earth-Science Reviews, 115, 173–191.

    Google Scholar 

  • Abbott, P. M., Austin, W. E. N., Davies, S. M., Pearce, N. J. G., and Hibbert, F. D., 2013. Cryptotephrochronology of the Eemian and the last interglacial-glacial transition in the north-east Atlantic. Journal of Quaternary Science, 28, 501–514.

    Google Scholar 

  • Albert, P. G., Tomlinson, E. L., Smith, V. C., Di Roberto, A., Todman, A., Rosi, M., Marani, M., Muller, W., and Menzies, M. A., 2012. Marine-continental tephra correlations: volcanic glass geochemistry from the Marsili Basin and the Aeolian Islands, southern Tyrrhenian Sea, Italy. Journal of Volcanology and Geothermal Research, 229–230, 74–94.

    Google Scholar 

  • Allan, A. S. R., Baker, J. A., Carter, L., and Wysoczanksi, R. J., 2008. Reconstructing the Quaternary evolution of the world’s most active silicic volcanic system: insights from a ~1.65 Ma deep ocean tephra record sourced from the Taupo Volcanic Zone, New Zealand. Quaternary Science Reviews, 27, 2341–2360.

    Google Scholar 

  • Allan, A. S. R., Morgan, D. J., Wilson, C. J. N., and Millet, M.-A., 2013. From mush to eruption in centuries: assembly of the super-sized Oruanui magma body. Contributions to Mineralogy and Petrology, 166, 143–164.

    Google Scholar 

  • Alloway, B. V., Pillans, B. J., Sandhu, A. S., and Westgate, J. A., 1993. Revision of the marine chronology in Wanganui Basin, New Zealand, based on the isothermal plateau fission-track dating of tephra horizons. Sedimentary Geology, 82, 299–310.

    Google Scholar 

  • Alloway, B. V., Westgate, J. A., Pillans, B. J., Pearce, N. J. G., Newnham, R. M., Bryami, M., and Aarburg, S., 2004a. Stratigraphy, age and correlation of middle Pleistocene silicic tephras in the Auckland region, New Zealand: a prolific distal record of Taupo Volcanic Zone volcanism. New Zealand Journal of Geology and Geophysics, 47, 447–479.

    Google Scholar 

  • Alloway, B. V., Pribadi, A., Westgate, J. A., Bird, M., Fifield, K. L., Hogg, A. G., and Smith, I. E. M., 2004b. Correspondence between glass-FT and 14C ages of silicic pyroclastic flow deposits sourced from Maninjau caldera, west-central Sumatra. Earth and Planetary Science Letters, 227, 121–133.

    Google Scholar 

  • Alloway, B. V., Pillans, B. J., Carter, L., Naish, T., and Westgate, J. A., 2005. Onshore-offshore correlation of Pleistocene rhyolitic eruptions from New Zealand: implications for TVZ eruptive history and paleoenvironmental construction. Quaternary Science Reviews, 24, 1601–1622.

    Google Scholar 

  • Alloway, B. V., Lowe, D. J., Barrell, D. J. A., Newnham, R. M., Almond, P. C., Augustinus, P. C., Bertler, N. A., Carter, L., Litchfield, N. J., McGlone, M. S., Shulmeister, J., Vandergoes, M. J., Williams, P. W., and NZ-INTIMATE members, 2007. Towards a climate event stratigraphy for New Zealand over the past 30,000 years (NZ-INTIMATE project). Journal of Quaternary Science, 22, 9–35.

    Google Scholar 

  • Alloway, B. V., Lowe, D. J., Larsen, G., Shane, P. A. R., and Westgate, J. A., 2013. Tephrochronology. In Elias, S. A., and Mock, C. J. (eds.), The Encyclopaedia of Quaternary Science, 2nd edn. Amsterdam: Elsevier, Vol. 4, pp. 277–304.

    Google Scholar 

  • Austin, W. E. N., Abbott, P. M., Davies, S. M., Pearce, N. J. G., and Wastegård, S., 2014. Marine tephrochronology: an introduction to tracing time in the ocean. Geological Society, London, Special Publications, 398, 1–5.

    Google Scholar 

  • Balascio, N. L., Wickler, S., Narmo, L. E., and Bradley, R. S., 2011. Distal cryptotephra found in a Viking boathouse: the potential for tephrochronology in reconstructing the Iron Age in Norway. Journal of Archaeological Science, 38, 934–941.

    Google Scholar 

  • Barrell, D. J. A., Almond, P. C., Vandergoes, M. J., Lowe, D. J., Newnham, R. M., and NZ-INTIMATE Members, 2013. A composite pollen-based stratotype for inter-regional evaluation of climatic events in New Zealand over the past 30,000 years (NZ-INTIMATE project). Quaternary Science Reviews, 74, 4–20.

    Google Scholar 

  • Biswas, R. H., Williams, M. A. J., Raj, R., Juyal, N., and Singhvi, A. K., 2013. Methodological studies on luminescence dating of volcanic ashes. Quaternary Geochronology, 17, 14–25.

    Google Scholar 

  • Blaauw, M., and Christen, J. A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6, 457–474.

    Google Scholar 

  • Blockley, S. P. E., Bronk Ramsey, C., Lane, C. S., and Lotter, A. F., 2008. Improved age modelling approaches as exemplified by the revised chronology for the central European varved lake Soppensee. Quaternary Science Reviews, 27, 61–71.

    Google Scholar 

  • Bourne, A. J., Lowe, J. J., Trincardi, F., Asioli, A., Blockley, S. P. E., Wulf, S., Matthews, I. P., Piva, A., and Vigliotti, L., 2010. Distal tephra record of the last c. 105,000 years from core PRAD 1–2 in the central Adriatic Sea: implications for marine tephrostratigraphy. Quaternary Science Reviews, 29, 3079–3094.

    Google Scholar 

  • Brendryen, J., Haflidason, H., and Sejrup, H. P., 2010. Norwegian Sea tephrostratigraphy of marine isotope stages 4 and 5: prospects and problems for tephrochronology in the North Atlantic region. Quaternary Science Reviews, 29, 847–864.

    Google Scholar 

  • Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337–360.

    Google Scholar 

  • Brumm, A. G., Jensen, G. M., van den Bergh, G. D., Morwood, M. J., Kurniawan, I., Aziz, F., and Storey, M., 2010. Hominins on Flores, Indonesia, by one million years ago. Nature, 464, 748–752.

    Google Scholar 

  • Chesner, C. A., and Luhr, J. F., 2010. A melt inclusion study of the Toba Tuffs, Sumatra, Indonesia. Journal of Volcanology and Geothermal Research, 197, 259–278.

    Google Scholar 

  • Chiasera, B., and Cortés, J. A., 2011. Predictive regions for geochemical compositional data of volcanic systems. Journal of Volcanology and Geothermal Research, 207, 83–92.

    Google Scholar 

  • Churchman, G. J., and Lowe, D. J., 2012. Alteration, formation, and occurrence of minerals in soils. In Huang, P. M., Li, Y., and Sumner, M. E. (eds.), Handbook of Soil Sciences, 2nd edn. Boca Raton: CRC Press. Properties and processes, Vol. 1, pp. 20.1–20.72.

    Google Scholar 

  • Cioni, R., Pistolesi, M., Bertagnini, A., Bonadonna, C., Hoskuldsson, A., and Scateni, B., 2014. Insights into the dynamics and evolution of the 2010 Eyjafjallajökull summit eruption (Iceland) provided by volcanic ash textures. Earth and Planetary Science Letters, 394, 111–123.

    Google Scholar 

  • Coulter, S. E., Pilcher, J. R., Plunkett, G., Baillie, M. G. L., Hall, V. A., Steffensen, J. P., Vinther, B. M., Clausen, H. B., and Johnsen, S. J., 2012. Holocene tephras highlight complexity of volcanic signals in Greenland ice cores. Journal of Geophysical Research, [Atmospheres], 117(D21303), 1–11, doi:10.1029/2012JD017698.

    Google Scholar 

  • Cullen, V. L., Smith, V. C., and Arz, H. W., 2014. The detailed tephrostratigraphy of a core from the south-east Black Sea spanning the last ~60 ka. Journal of Quaternary Science, 29, 675–690.

    Google Scholar 

  • Danišík, M., Shane, P. A. R., Schmitt, A. K., Hogg, A. G., Santos, G. M., Storm, S., Evans, N. J., Fifield, L. K., and Lindsay, J. M., 2012. Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U-Th)/He zircon ages. Earth and Planetary Science Letters, 349–350, 240–250.

    Google Scholar 

  • Davies, S. M., Elmquist, M., Bergman, J., Wohlfarth, B., and Hammarlund, D., 2007. Cryptotephra sedimentation processes within two lacustrine sequences from west central Sweden. The Holocene, 17, 319–330.

    Google Scholar 

  • Davies, S. M., Wastegård, S., Abbott, P. M., Barbante, C., Bigler, M., Johnsen, S. J., Rasmussen, T. L., Steffensen, J. P., and Svensson, A., 2010. Tracing volcanic events in the NGRIP ice-core and synchronising North Atlantic marine records during the last glacial period. Earth and Planetary Science Letters, 294, 69–79.

    Google Scholar 

  • Davies, S. M., Abbott, P. M., Pearce, N. J. G., Wastegård, S., and Blockley, S. P. E., 2012. Integrating the INTIMATE records using tephrochronology: rising to the challenge. Quaternary Science Reviews, 36, 11–27.

    Google Scholar 

  • de Fontaine, C. S., Kaufman, D. S., Anderson, R. S., Werner, A., Waythomas, C. F., and Brown, T. A., 2007. Late Quaternary distal tephra-fall deposits in lacustrine sediments, Kenai Peninsula, Alaska. Quaternary Research, 68, 64–78.

    Google Scholar 

  • Dickinson, W. R., Stair, K. N., Gehrels, G. E., Peters, L., Kowallis, B. J., Blakely, R. C., Ammar, J. R., and Greenhalgh, B. W., 2010. U-Pb and 40Ar/39Ar ages for a tephra lens in the Middle Jurassic Page Sandstone: first direct isotope dating of a Mesozoic eolianite on the Colorado Plateau. Journal of Geology, 118, 215–221.

    Google Scholar 

  • Donoghue, S. L., Stewart, R. B., and Palmer, A. S., 1991. Morphology and chemistry of olivine phenocrysts of Mangamate Tephra, Tongariro Volcanic Centre, New Zealand. Journal of the Royal Society of New Zealand, 21, 225–236.

    Google Scholar 

  • Dugmore, A. J., and Newton, A. J., 2012. Isochrons and beyond: maximising the use of tephrochronology in geomorphology. Jökull, 62, 39–52.

    Google Scholar 

  • Dunbar, N. W., and Kurbatov, A. V., 2011. Tephrochronology of the Siple Dome ice core, West Antarctica: correlations and sources. Quaternary Science Reviews, 30, 1602–1614.

    Google Scholar 

  • Eden, D. N., Palmer, A. S., Cronin, S. J., Marden, M., and Berryman, K. R., 2001. Dating the culmination of river aggradation at the end of the last glaciation using distal tephra compositions, eastern North Island, New Zealand. Geomorphology, 38, 133–151.

    Google Scholar 

  • Feibel, C. S., 1999. Tephrostratigraphy and geological context in paleoanthropology. Evolutionary Anthropology, 8, 87–100.

    Google Scholar 

  • Gehrels, M. J., Lowe, D. J., Hazell, Z. J., and Newnham, R. M., 2006. A continuous 5000-year Holocene cryptotephrostratigraphic record from northern New Zealand: implications for tephrochronology and volcanic hazard assessment. The Holocene, 16, 173–187.

    Google Scholar 

  • Gehrels, M. J., Newnham, R. M., Lowe, D. J., Wynne, S., Hazell, Z. J., and Caseldine, C., 2008. Towards rapid assay of cryptotephra in peat cores: review and evaluation of various methods. Quaternary International, 178, 68–84.

    Google Scholar 

  • Giaccio, B., Arienzo, I., Sottili, G., Castorina, F., Gaeta, M., Nomade, S., Galli, P., and Messina, P., 2013. Isotopic (Sr-Nd) and major element fingerprinting of distal tephras: an application to the Middle-Late Pleistocene markers from the Colli Albani volcano, central Italy. Quaternary Science Reviews, 67, 190–206.

    Google Scholar 

  • Guðmundsdóttir, E. R., Eiríksson, J., and Larsen, G., 2012. Holocene marine tephrochronology on the Iceland shelf: an overview. Jökull, 62, 53–72.

    Google Scholar 

  • Hall, M., and Hayward, C., 2014. Preparation of micro- and crypto-tephras for quantitative microbeam analysis. Geological Society, London, Special Publications, 398, 21–28.

    Google Scholar 

  • Hall, V. A., and Pilcher, J. R., 2002. Late-Quaternary Icelandic tephras in Ireland and Great Britain: detection, characterization and usefulness. The Holocene, 12, 223–230.

    Google Scholar 

  • Hayward, C., 2012. High spatial resolution electron probe microanalysis of tephras and melt inclusions without beam-induced chemical modification. The Holocene, 22, 119–125.

    Google Scholar 

  • Hodder, A. P. W., de Lange, P. J., and Lowe, D. J., 1991. Dissolution and depletion of ferromagnesian minerals from Holocene tephras in an acid bog, New Zealand, and implications for tephra correlation. Journal of Quaternary Science, 6, 195–208.

    Google Scholar 

  • Hogg, A. G., Fifield, L. K., Palmer, J. G., Turney, C. S. M., and Galbraith, R., 2007. Robust radiocarbon dating of wood samples by high-sensitivity liquid scintillation spectroscopy in the 50–70 kyr age range. Radiocarbon, 49, 379–391.

    Google Scholar 

  • Hogg, A. G., Lowe, D. J., Palmer, J. G., Boswijk, G., and Bronk Ramsey, C. J., 2012. Revised calendar date for the Taupo eruption derived by 14C wiggle-matching using a New Zealand kauri 14C calibration data set. The Holocene, 22, 439–449.

    Google Scholar 

  • Housley, R. A., Lane, C. S., Cullen, V. L., Weber, M.-J., Riede, F., Gamble, C. S., and Brock, F., 2012. Icelandic volcanic ash from the Late-glacial open-air archaeological site of Ahrenshöft LA 58 D, north Germany. Journal of Archaeological Science, 39, 708–716.

    Google Scholar 

  • Housley, R. A., MacLeod, A., Nalepka, D., Jurochnik, A., Masojć, M., Davies, L., Lincoln, P. C., Bronk Ramsey, C., Gamble, C. S., and Lowe, J. J., 2013. Tephrostratigraphy of a Lateglacial lake sediment sequence at Węgliny, southwest Poland. Quaternary Science Reviews, 77, 4–18.

    Google Scholar 

  • Jensen, B. J. L., Pyne-O’Donnell, S., Plunkett, G., Froese, D. G., Hughes, P. D. M., Sigl, M., McConnell, J. R., Amesbury, M. J., Blackwell, P. G., van den Bogaard, C., Buck, C. E., Charman, D. J., Clague, J. J., Hall, V. A., Koch, J., Mackay, H., Mallon, G., McColl, L., and Plicher, J. R., 2014. Transatlantic distribution of the Alaskan White River Ash. Geology, 42, 875–878.

    Google Scholar 

  • Juvigné, E. T., and Porter, S. C., 1985. Mineralogical variations within two widespread Holocene tephra layers from Cascade Range volcanoes, U.S.A. Géographie Physique et Quaternaire, 39, 7–12.

    Google Scholar 

  • Kilgour, G., Blundy, J., Cashman, K., and Mader, H. M., 2013. Small volume andesite magmas and melt-mush interactions at Ruapehu, New Zealand: evidence from melt inclusions. Contributions to Mineralogy and Petrology, 166, 371–392.

    Google Scholar 

  • Kuehn, S. C., and Negrini, R. M., 2010. A 250 k.y. record of Cascade arc pyroclastic volcanism from late Pleistocene lacustrine sediments near Summer Lake, Oregon, USA. Geosphere, 6, 397–429.

    Google Scholar 

  • Kuehn, S. C., Froese, D. G., Shane, P. A. R., and Intercomparison Participants, I. N. T. A. V., 2011. The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: results and recommendations. Quaternary International, 246, 19–47.

    Google Scholar 

  • Lane, C. S., Chorn, B. T., and Johnson, T. C., 2013. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences of the United States of America, 110, 8025–8029.

    Google Scholar 

  • Lane, C. S., Cullen, V. L., White, D., Bramham-Law, C. W. F., and Smith, V. C., 2014. Cryptotephra as a dating and correlation tool in archaeology. Journal of Archaeological Science, 42, 42–50.

    Google Scholar 

  • Larsen, G., Eiríksson, J., and Gudmundsdóttir, E. R., 2014. Last millennium dispersal of air-fall tephra and ocean-rafted pumice towards the north Icelandic shelf and the Nordic seas. Geological Society, London, Special Publications, 398, 113–140.

    Google Scholar 

  • Lawson, I. T., Swindles, G. T., Plunkett, G., and Greenberg, D., 2012. The spatial distribution of Holocene cryptotephras in north-west Europe since 7 ka: implications for understanding ash fall events from Icelandic eruptions. Quaternary Science Reviews, 41, 57–66.

    Google Scholar 

  • Liu, E. J., Cashman, K. V., Beckett, F. M., Witham, C. S., Leadbetter, S. J., Hort, M. C., and Guðmundsson, S., 2014. Ash mists and brown snow: remobilization of volcanic ash from recent Icelandic eruptions. Journal of Geophysical Research, [Atmospheres], 119, 9463–9480.

    Google Scholar 

  • Lohne, Ø. S., Mangerud, J., and Birks, H. H., 2013. Precise 14C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC05) chronology. Journal of Quaternary Science, 28, 490–500.

    Google Scholar 

  • Lowe, D. J., 1986. Controls on the rates of weathering and clay mineral genesis in airfall tephras: a review and New Zealand case study. In Colman, S. M., and Dethier, D. P. (eds.), Rates of Chemical Weathering of Rocks and Minerals. Orlando: Academic, pp. 265–330.

    Google Scholar 

  • Lowe, D. J., 2011. Tephrochronology and its application: a review. Quaternary Geochronology, 6, 107–153.

    Google Scholar 

  • Lowe, D. J., and Tonkin, P. J., 2010. Unravelling upbuilding pedogenesis in tephra and loess sequences in New Zealand using tephrochronology. In Proceedings 19th World Congress of Soil Science. Available at http://www.iuss.org/19th%20WCSS/WCSS_Main_Page.html, Geochronological techniques and soil formation symposium 1.3.2, pp. 34–37.

  • Lowe, D. J., Shane, P. A. R., Alloway, B. V., and Newnham, R. M., 2008. Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE. Quaternary Science Reviews, 27, 95–126.

    Google Scholar 

  • Lowe, J. J., Barton, N., Blockley, S., Bronk Ramsey, C., Cullen, V. L., et al., 2012. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proceedings of the National Academy of Sciences of the United States of America, 109, 13532–13537.

    Google Scholar 

  • Lowe, D. J., Blaauw, M., Hogg, A. G., and Newnham, R. M., 2013. Ages of 24 widespread tephras erupted since 30,000 years ago in New Zealand, with re-evaluation of the timing and palaeoclimatic implications of the Lateglacial cool episode recorded at Kaipo bog. Quaternary Science Reviews, 74, 170–194.

    Google Scholar 

  • Manville, V., and Wilson, C. J. N., 2004. The 26.5 ka Oruanui eruption, New Zealand: a review of the roles of volcanism and climate in the post-eruptive sedimentary response. New Zealand Journal of Geology and Geophysics, 47, 525–547.

    Google Scholar 

  • Marcaida, M., Mangan, M. T., Vazquez, J. A., Bursik, M., and Lidzbarski, M. I., 2014. Geochemical fingerprinting of Wilson Creek formation tephra layers (Mono Basin, California) using titanomagnetite compositions. Journal of Volcanology and Geothermal Research, 273, 1–14.

    Google Scholar 

  • Matsu’ura, T., Ueno, T., and Furusawa, A., 2011. Characterization and correlation of cryptotephras using major-element analyses of melt inclusions preserved in quartz in last interglacial marine sediments, southeastern Shikoku, Japan. Quaternary International, 246, 48–56.

    Google Scholar 

  • Matsu’ura, T., Furusawa, A., and Yanagida, M., 2012. Detection and correlation of widespread cryptotephras in middle Pleistocene loess in NE Japan using cummingtonite geochemistry. Journal of Asian Earth Sciences, 60, 49–67.

    Google Scholar 

  • Moebis, A., Cronin, S. J., Neall, V. E., and Smith, I. E., 2011. Unravelling a complex volcanic history from fine-grained, intricate Holocene ash sequences at the Tongariro Volcanic Centre, New Zealand. Quaternary International, 246, 352–363.

    Google Scholar 

  • Mullen, P. O., 2012. An archaeological test of the effects of the White River Ash eruptions. Arctic Anthropology, 49, 35–44.

    Google Scholar 

  • Naranjo, J. A., and Stern, C. R., 2004. Holocene tephrochonology of the southernmost part (42° 30′ −45° S) of the Andean Southern Volcanic Zone. Revista Geologica de Chile, 31, 225–240.

    Google Scholar 

  • Newnham, R. M., and Lowe, D. J., 1999. Testing the synchroneity of pollen signals using tephrostratigraphy. Global and Planetary Change, 21, 113–128.

    Google Scholar 

  • Newnham, R. M., Eden, D. N., Lowe, D. J., and Hendy, C. H., 2003. Rerewhakaaitu Tephra, a land-sea marker for the last termination in New Zealand, with implications for global climate change. Quaternary Science Reviews, 22, 289–308.

    Google Scholar 

  • Newnham, R. M., Vandergoes, M. J., Garnett, M. H., Lowe, D. J., Prior, C., and Almond, P. C., 2007. Test of AMS 14C dating of pollen concentrates using tephrochronology. Journal of Quaternary Science, 22, 37–51.

    Google Scholar 

  • O’Sullivan, P. B., Morwood, M. J., Hobbs, D., Aziz, F., Suminto, A. F., Situmorang, M., Raza, A., and Maas, R., 2001. Archaeological implications of the geology and chronology of the Soa basin, Flores, Indonesia. Geology, 29, 607–610.

    Google Scholar 

  • Óladóttir, B. A., Sigmarsson, O., Larsen, G., and Thordarson, T., 2008. Katla volcano, Iceland: magma composition, dynamics and eruption frequency as recorded by Holocene tephra layers. Bulletin of Volcanology, 70, 475–493.

    Google Scholar 

  • Óladóttir, B. A., Larsen, G., and Sigmarsson, O., 2012. Deciphering eruption history and magmatic processes from tephra in Iceland. Jökull, 62, 21–38.

    Google Scholar 

  • Payne, R., and Gehrels, M. J., 2010. The formation of tephra layers in peatlands: an experimental approach. Catena, 81, 12–23.

    Google Scholar 

  • Payne, R., Blackford, J., and van der Plicht, J., 2008. Using cryptotephras to extend regional tephrochronologies: an example from southeast Alaska and implications for hazard assessment. Quaternary Research, 69, 24–55.

    Google Scholar 

  • Pearce, N. J. G., 2014. Towards a protocol for the trace element analysis of glass from rhyolitic shards in tephra deposits by laser ablation ICP-MS. Journal of Quaternary Science, 29, 627–640.

    Google Scholar 

  • Pearce, N. J. G., Bendall, C. A., and Westgate, J. A., 2008a. Comment on “Some numerical considerations in the geochemical analysis of distal microtephra” by A.M. Pollard, S.P.E. Blockley, C.S. Lane, Applied Geochemistry 21, 1692–1714. Applied Geochemistry, 23, 1353–1364.

    Google Scholar 

  • Pearce, N. J. G., Alloway, B. V., and Westgate, J. A., 2008b. Mid-Pleistocene silicic tephra beds in the Auckland region, New Zealand: their correlation and origins based on the trace element analyses of single glass shards. Quaternary International, 178, 16–43.

    Google Scholar 

  • Pearce, N. J. G., Westgate, J. A., Perkins, W. T., and Wade, S. C., 2011. Trace-element microanalysis by LA-ICP-MS: the quest for comprehensive chemical characterisation of single, sub-10 μm volcanic glass shards. Quaternary International, 246, 57–81.

    Google Scholar 

  • Pearce, N. J. G., Abbott, P. M., and Martin-Jones, C., 2014. Microbeam methods for the analysis of glass in fine-grained tephra deposits: a SMART perspective on current and future trends. Geological Society, London, Special Publications, 398, 29–46.

    Google Scholar 

  • Pillans, B., Alloway, B. V., Naish, T., Westgate, J. A., Abbot, S., and Palmer, A. S., 2005. Silicic tephras in Pleistocene shallow marine sediments of Wanganui Basin, New Zealand. Journal of the Royal Society of New Zealand, 35, 43–90.

    Google Scholar 

  • Platz, T., Cronin, S. J., Smith, I. E. M., Turner, M. B., and Stewart, R. B., 2007. Improving the reliability of microprobe-based analyses of andesitic glasses for tephra correlation. The Holocene, 17, 573–583.

    Google Scholar 

  • Ponomareva, V., Kyle, P. R., Melekestsev, I. V., Rinkleff, P. G., Dirksen, O. V., Sulerzhitsky, L. D., Zaretskaia, N. E., and Rourke, R., 2004. The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships. Journal of Volcanology and Geothermal Research, 136, 199–222.

    Google Scholar 

  • Ponomareva, V., Portnyagin, M., Derkachev, A., Pendea, L. F., Bourgeois, J., Reimer, P. J., Garbe-Schonberg, D., Krasheninnikov, S., and Nurnberg, D., 2013a. Early Holocene M ~6 explosive eruption from Plosky volcanic massif (Kamchatka) and its tephra as a link between terrestrial and marine paleoenvironmental records. International Journal of Earth Sciences, 102, 1673–1699.

    Google Scholar 

  • Ponomareva, V., Portnyagin, M., Derkachev, A., Juschus, O., Garbe-Schonberg, D., and Nurnberg, D., 2013b. Identification of a widespread Kamchatkan tephra: a middle Pleistocene tie-point between Arctic and Pacific paleoclimatic records. Geophysical Research Letters, 40, 3538–3543.

    Google Scholar 

  • Preece, S. J., Westgate, J. A., Stemper, B. A., and Péwé, T. L., 1999. Tephrochronology of late Cenozoic loess at Fairbanks, central Alaska. Geological Society of America Bulletin, 111, 71–90.

    Google Scholar 

  • Preece, S. J., Westgate, J. A., Alloway, B. V., and Milner, M. W., 2000. Characterization, identity, distribution, and source of late Cenozoic tephra beds in the Klondike district of the Yukon, Canada. Canadian Journal of Earth Sciences, 37, 983–996.

    Google Scholar 

  • Preece, S. J., Westgate, J. A., Froese, D. G., Pearce, N. J. G., and Perkins, W. T., 2011a. A catalogue of late Cenozoic tephra beds in the Klondike goldfields, Yukon. Canadian Journal of Earth Sciences, 48, 1386–1418.

    Google Scholar 

  • Preece, S. J., Pearce, N. J. G., Westgate, J. A., Froese, D. G., Jensen, B. J. L., and Perkins, W. T., 2011b. Old Crow tephra across eastern Beringia: a single cataclysmic eruption at the close of Marine Isotope Stage 6. Quaternary Science Reviews, 30, 2069–2090.

    Google Scholar 

  • Pyne-O’Donnell, S. D. F., 2011. The taphonomy of Last Glacial-Interglacial Transition (LGIT) distal volcanic ash in small Scottish lakes. Boreas, 40, 131–145.

    Google Scholar 

  • Pyne-O’Donnell, S. D. F., Hughes, P. D. M., Froese, D. G., Jensen, B. J. L., Kuehn, S. C., Mallon, G., Amesbury, M. J., Charman, D. J., Daley, T. J., Loader, N. J., Mauquoy, D., Street-Perrott, F. A., and Woodman-Ralph, J., 2012. High-precision ultra-distal Holocene tephrochronology in North America. Quaternary Science Reviews, 52, 6–11.

    Google Scholar 

  • Riede, F., and Thastrup, M. D., 2013. Tephra, tephrochronology and archaeology – a (re-) view from northern Europe. Heritage Science, 1(15), 1–17.

    Google Scholar 

  • Roulleau, E., Pinti, D. L., Rouchon, V., Quidelleur, X., and Gillot, P.-Y., 2009. Tephro-chronostratigraphy of the lacustrine interglacial record of Piànico, Italian southern Alps: identifying the volcanic sources using radiogenic isotopes and trace elements. Quaternary International, 204, 31–43.

    Google Scholar 

  • Sanborne, P. T., Smith, C. A. S., Froese, D. G., Zazula, G., and Westgate, J. A., 2006. Full-glacial paleosols in perenially frozen loess sequences, Klondike goldfields, Yukon Territory, Canada. Quaternary Research, 66, 147–157.

    Google Scholar 

  • Sandhu, A. S., and Westgate, J. A., 1995. The correlation between reduction in fission-track diameter and areal track density in volcanic glass shards and its application in dating tephra beds. Earth and Planetary Science Letters, 131, 289–299.

    Google Scholar 

  • Scaillet, S., Vita-Scaillet, G., and Rotolo, S. G., 2013. Millennial-scale phase relationships between ice-core and Mediterranean marine records: insights from high-precision 40Ar/39Ar dating of the Green Tuff of Pantelleria, Sicily Strait. Quaternary Science Reviews, 78, 141–154.

    Google Scholar 

  • Schmitt, A. K., 2006. Laacher See revisited: high-spatial-resolution zircon dating indicates rapid formation of a zoned magma chamber. Geology, 34, 597–600.

    Google Scholar 

  • Sell, B. K., and Samson, S. D., 2011. A tephrochronologic method based on apatite trace-element chemistry. Quaternary Research, 76, 157–166.

    Google Scholar 

  • Shane, P. A. R., 1998. Correlation of rhyolitic pyroclastic eruptive units from the Taupo volcanic zone by Fe-Ti oxide compositional data. Bulletin of Volcanology, 60, 224–238.

    Google Scholar 

  • Shane, P. A. R., 2000. Tephrochronology: a New Zealand case study. Earth-Science Reviews, 49, 223–259.

    Google Scholar 

  • Shane, P. A. R., and Hoverd, J., 2002. Distal record of multi-sourced tephra in Onepoto Basin, Auckland, New Zealand: implications for volcanic chronology, frequency and hazards. Bulletin of Volcanology, 64, 441–454.

    Google Scholar 

  • Shane, P. A. R., and Zawalna-Geer, A., 2011. Correlation of basaltic tephra from Mt Wellington volcano: implications for the penultimate eruption from the Auckland Volcanic Field. Quaternary International, 246, 374–381.

    Google Scholar 

  • Shane, P. A. R., Smith, V. C., and Nairn, I. A., 2003. Biotite composition as a tool for the identification of Quaternary tephra beds. Quaternary Research, 59, 262–270.

    Google Scholar 

  • Shane, P. A. R., Sikes, E. L., and Guilderson, T. P., 2006. Tephra beds in deep-sea cores off northern New Zealand: implications for the history of Taupo Volcanic Zone, Mayor Island and White Island volcanoes. Journal of Volcanology and Geothermal Research, 154, 276–290.

    Google Scholar 

  • Shane, P. A. R., Nairn, I. A., Martin, S. B., and Smith, V. C., 2008a. Compositional heterogeneity in tephra deposits resulting from the eruption of multiple magma bodies: implications for tephrochronology. Quaternary International, 178, 44–53.

    Google Scholar 

  • Shane, P. A. R., Smith, V. C., and Nairn, I. A., 2008b. Millennial timescale resolution of rhyolite magma recharge at Tarawera volcano: insights from quartz chemistry and melt inclusions. Contributions to Mineralogy and Petrology, 156, 397–411.

    Google Scholar 

  • Shane, P., Gehrels, M. J., Zawalna-Geer, A., Lindsay, J., and Chaillou, I., 2013. Longevity of a small shield volcano revealed by crypto-tephra studies (Rangitoto volcano, New Zealand): change in eruptive behavior of a basaltic field. Journal of Volcanology and Geothermal Research, 257, 174–183.

    Google Scholar 

  • Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris, D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney, R., and Kipfstuhl, S., 2013. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. Journal of Geophysical Research, [Atmospheres], 118, 1151–1169.

    Google Scholar 

  • Sirocko, F., Dietrich, S., Veres, D., Grootes, P. M., Schaber-Mohr, K., Seelos, K., Nadeau, M.-J., Kromer, B., Rothacker, L., Röhner, M., Krbetschek, M., Appleby, P., Hambach, U., Rolf, C., Sudo, M., and Grim, S., 2013. Multi-proxy dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany. Quaternary Science Reviews, 62, 56–76.

    Google Scholar 

  • Smith, V. C., Shane, P., and Nairn, I. A., 2005. Trends in rhyolite geochemistry, mineralogy, and magma storage during the last 50 kyr at Okataina and Taupo volcanic centres, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 148, 372–406.

    Google Scholar 

  • Smith, V. C., Pearce, N. J. G., Matthews, N. E., Westgate, J. A., Durant, A. J., Lane, C., Petraglia, M. D., Haslam, M., Korisettar, R., and Pal, J. N., 2011. Chemically fingerprinting volcanic ash from Toba using biotite compositions. Quaternary International, 246, 97–104.

    Google Scholar 

  • Smith, V. C., Staff, R. A., Blockley, S. P. E., Bronk Ramsey, C., Nakagawa, T., Mark, D. F., Takemura, K., Danhara, T., and Suigetsu 2006 Project Members, 2013. Identification and correlation of visible tephras in the Lake Suigetsu SG06 sedimentary archive, Japan: chronostratigraphic markers for synchronising of east Asian/west Pacific palaeoclimatic records across the last 150 ka. Quaternary Science Reviews, 67, 121–137.

    Google Scholar 

  • Staff, R. A., Bronk Ramsey, C., Bryant, C. L., Brock, F., Payne, R. L., Schlolaut, G., Marshall, M. H., Brauer, A., Lamb, H. L., Tarasov, P., Rokoyama, Y., Haraguchi, T., Gotanda, K., Yonenobu, H., Nakagawa, T., and Suigetsu 2006 Project Members, 2011. New 14C determinations from Lake Suigetsu, Japan: 12,000 to 0 cal BP. Radiocarbon, 53, 511–528.

    Google Scholar 

  • Staff, R. A., Nakagawa, T., Schlolaut, G., Marshall, M. H., Brauer, A., et al., 2013. The multiple chronological techniques applied to the Lake Suigetsu SG06 sediment core, central Japan. Boreas, 42, 259–266.

    Google Scholar 

  • Stevenson, J. A., Loughlin, S., Rae, C., Thordarson, T., Milodowski, A. E., Gilbert, J. S., Harangi, S., Lukács, R., Højgaard, B., Arting, U., Pyne-O’Donnell, S., MacLeod, A., Whitney, B., and Cassidy, M., 2012. Distal deposition of tephra from the Eyjafjallajökull 2010 summit eruption. Journal of Geophysical Research, 117(B00C10), 1–10, doi:10.1029/2011JB008904.

    Google Scholar 

  • Storey, M., Roberts, R. G., and Saidin, M., 2012. Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records. Proceedings of the National Academy of Sciences of the United States of America, 109, 18684–18688.

    Google Scholar 

  • Streeter, R. T., and Dugmore, A. J., 2013. Reconstructing late-Holocene environmental change in Iceland using high-resolution tephrochronology. The Holocene, 23, 197–207.

    Google Scholar 

  • Sulpizio, R., Alçiçek, M. C., Zanchetta, G., and Solari, L., 2013. Recognition of the Minoan tephra in the Acigöl Basin, western Turkey: implications for inter-archive correlations and fine ash dispersal. Journal of Quaternary Science, 28, 329–335.

    Google Scholar 

  • Sumita, M., and Schminke, H.-U., 2013. Impact of volcanism on the evolution of Lake Van II: temporal evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia) during the past ca. 0.4 Ma. Journal of Volcanology and Geothermal Research, 253, 15–34.

    Google Scholar 

  • Suzuki, T., Kasahara, A., Nishizawa, F., and Saito, H., 2014. Chemical characterization of volcanic glass shards by energy dispersive X-ray spectrometry with EDAX Genesis APEX2 and JEOL JSM-6390. Geographical Reports of Tokyo Metropolitan University, 49, 1–12.

    Google Scholar 

  • Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M., 2008. A 60,000 year Greenland stratigraphic ice core chronology. Climate of the Past, 4, 47–57.

    Google Scholar 

  • Swindles, G. T., De Vleeschouwer, F., and Plunkett, G., 2010. Dating peat profiles using tephra: stratigraphy, geochemistry and chronology. Mires and Peat, 7, 1–9.

    Google Scholar 

  • Swindles, G. T., Lawson, I. T., Savov, I. P., Connor, C. B., and Plunkett, G., 2011. A 7000 yr perspective on volcanic ash clouds affecting northern Europe. Geology, 39, 887–890.

    Google Scholar 

  • Swindles, G. T., Galloway, J., Outram, Z., Turner, K., Schofield, J. E., Newton, A. J., Dugmore, A. J., Church, M. J., Watson, E. J., Batt, C., Bond, J., Edwards, K. J., Turner, V., and Bashford, D., 2013. Re-deposited cryptotephra layers in Holocene peats linked to anthropogenic activity. The Holocene, 23, 1493–1501.

    Google Scholar 

  • Todd, J. A., Austin, W. E., and Abbott, P. E., 2014. Quantifying bioturbation of a simulated ash fall event. Geological Society, London, Special Publications, 398, 195–207.

    Google Scholar 

  • Torres, R., Mouginis-Mark, P., Self, S., Garbeil, H., Kallianpur, K., and Quiambao, R., 2004. Monitoring the evolution of the Pasig-Porero alluvial fan, Pinatubo Volcano, using a decade of remote sensing data. Journal of Volcanology and Geothermal Research, 138, 371–392.

    Google Scholar 

  • Tryon, C. A., Faith, J. T., Peppe, D. J., Fox, D. L., Holt, K., Dunsworth, H., and Harcourt-Smith, W., 2010. The Pleistocene archaeology and environments of the Wasiriya Beds, Rusinga Island, Kenya. Journal of Human Evolution, 59, 657–671.

    Google Scholar 

  • Turner, M. B., Cronin, S. J., Bebbington, M. S., Smith, I. E., and Stewart, R. B., 2011a. Integrating records of explosive and effusive activity from proximal and distal sequences: Mt. Taranaki, New Zealand. Quaternary International, 246, 364–373.

    Google Scholar 

  • Turner, M. B., Cronin, S. J., Bebbington, M. S., Smith, I. E. M., and Stewart, R. B., 2011b. Relating magma composition with eruption variability at andesitic volcanoes. A case study from Mt. Taranaki, New Zealand. Geological Society of America Bulletin, 123, 2005–2015.

    Google Scholar 

  • Turney, C. S. M., and Lowe, J. J., 2001. Tephrochronology. In Last, W. M., and Smol, J. P. (eds.), Tracking Environmental Changes in Lake Sediments: Physical and Chemical Techniques. Dordrecht: Kluwer, pp. 451–471.

    Google Scholar 

  • Ukstins Peate, I., Kent, A. J. R., Baker, J. A., and Menzies, M. A., 2008. Extreme geochemical heterogeneity in Afro-Arabian Oligocene tephras: preserving fractional crystallization and mafic recharge processes in silicic magma chambers. Lithos, 102, 260–278.

    Google Scholar 

  • van den Bogaard, P., 1995. Ar-40/Ar-39 ages of sanidine phenocrysts from Laacher-See tephra (12,900 yr BP) – chronostratigraphic and petrological significance. Earth and Planetary Science Letters, 133, 163–174.

    Google Scholar 

  • Van den Bogaard, P., and Schminke, H.-U., 1985. Laacher See tephra: a widespread isochronous late Quaternary tephra layer in central and northern Europe. Bulletin of the Geological Society of America, 96, 1554–1571.

    Google Scholar 

  • Vandergoes, M. J., Hogg, A. G., Lowe, D. J., Newnham, R. M., Denton, G. H., Southon, J., Barrell, D. J. A., Blaauw, M., Wilson, C. J. N., McGlone, M. S., Allan, A. S. R., Almond, P. C., Petchey, F., Dalbell, K., and Dieffenbacher-Krall, A. C., 2013. A revised age for the Kawakawa/Oruanui tephra, a key marker for the Last Glacial Maximum in New Zealand. Quaternary Science Reviews, 74, 195–200.

    Google Scholar 

  • Westgate, J. A., 1989. Isothermal plateau fission track ages of hydrated glass shards from silicic tephra beds. Earth and Planetary Science Letters, 95, 226–234.

    Google Scholar 

  • Westgate, J. A., Smith, D. G. W., and Nichols, H., 1969. Late Quaternary pyroclastic layers in the Edmonton area, Alberta. In Pawluk, S. (ed.), Pedology and Quaternary Research. Edmonton: University of Alberta, pp. 179–186.

    Google Scholar 

  • Westgate, J. A., Stemper, B. A., and Péwé, T. L., 1990. A 3 m.y. record of Pliocene-Pleistocene loess in interior Alaska. Geology, 18, 858–861.

    Google Scholar 

  • Westgate, J., Shane, P., Pearce, N., Perkins, W., Korisettar, R., Chesner, C. A., Williams, M., and Acharyya, S. K., 1998. All Toba tephra occurrences across Peninsular India belong to the 75,000 yr B.P. eruption. Quaternary Research, 50, 107–112.

    Google Scholar 

  • Westgate, J. A., Preece, S. J., Froese, D. G., Pearce, N. J. G., Roberts, R. G., Demuro, M., Hart, W. K., and Perkins, W., 2008. Changing ideas on the identity and stratigraphic significance of the Sheep Creek tephra beds in Alaska and the Yukon Territory, northwestern North America. Quaternary International, 178, 183–209.

    Google Scholar 

  • Westgate, J. A., Pearce, N. J. G., Perkins, W. T., Shane, P. A. R., and Preece, S. J., 2011. Lead isotope ratios of volcanic glass by laser ablation inductively-coupled plasma mass spectrometry: application to Miocene tephra beds in Montana, USA and adjacent areas. Quaternary International, 246, 89–96.

    Google Scholar 

  • Westgate, J. A., Pearce, G. W., Preece, S. J., Schweger, C. E., Morlan, R. E., Pearce, N. J. G., and Perkins, W. T., 2013a. Tephrochronology, magnetostratigraphy and mammalian faunas of Middle and Early Pleistocene sediments at two sites on the Old Crow River, northern Yukon Territory, Canada. Quaternary Research, 79, 75–85.

    Google Scholar 

  • Westgate, J. A., Naeser, N. D., and Alloway, B. V., 2013b. Fission-track dating. In Elias, S. A., and Mock, C. J. (eds.), The Encyclopaedia of Quaternary Science, 2nd edn. Amsterdam: Elsevier, Vol. 1, pp. 643–662.

    Google Scholar 

  • Westgate, J. A., Pearce, N. J. G., Perkins, W. T., Preece, S. J., Chesner, C. A., and Muhammad, R. F., 2013c. Tephrochronology of the Toba tuffs: four primary glass populations define the 75 ka Youngest Toba Tuff, northern Sumatra, Indonesia. Journal of Quaternary Science, 28, 772–776.

    Google Scholar 

  • White, J. F. L., and Houghton, B. F., 2006. Primary volcaniclastic rocks. Geology, 34, 677–680.

    Google Scholar 

  • Wilson, C. J. N., Gravley, D. M., Leonard, G. S., and Rowland, J. V., 2009. Volcanism in the central Taupo Volcanic Zone, New Zealand: tempo, styles and controls. In Thordarson, T., Self, S., Larsen, G., Rowland, S. K., and Hoskuldsson, A. (eds.), Studies in Volcanology: The Legacy of George Walker. London: Geological Society. Special publications of IAVCEI, Vol. 2, pp. 225–247.

    Google Scholar 

  • Wilson, C. J. N., Charlier, B. L. A., Rowland, J. V., and Browne, P. R. L., 2010. U-Pb dating of zircon in subsurface, hydrothermally altered pyroclastic deposits and implications for subsidence in a magmatically active rift: Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 191, 69–78.

    Google Scholar 

  • Yin, J., Jull, A. J. T., Burr, G. S., and Zheng, Y., 2012. A wiggle-match age for the Millennium eruption of Tianchi Volcano at Changbaishan, northeastern China. Quaternary Science Reviews, 47, 150–159.

    Google Scholar 

  • Zalasiewicz, J., Cita, M. B., Hilgen, F., Pratt, B. R., Strasser, A., Thierry, J., and Weissert, H., 2013. Chronostratigraphy and geochronology: a proposed realignment. GSA Today, 23, 4–8.

    Google Scholar 

  • Zdanowicz, C. M., Zielinski, G. A., and Germani, M. S., 1999. Mount Mazama eruption: calendrical age verified and atmospheric impact assessed. Geology, 27, 621–624.

    Google Scholar 

Download references

Acknowledgments

We thank editors Jeroen Thompson and Jack Rink for inviting us to write this entry and for their suggestions, reviewer Vera Ponomareva for her helpful comments, Megan Balks and Adam Brumm for providing photographs, and Chris Hayward and John Westgate for furnishing preprints. Elsevier kindly allowed us to use previously published material (Figs. 7 and 8). The entry was funded in part by the New Zealand Marsden Fund (project 10-UOW-056 to DJL entitled “New views from old soils”), administered by the Royal Society of New Zealand, and it is an output also of the INTREPID Tephra-II project (INQUA project 1307s) “Enhancing tephrochronology as a global research tool through improved fingerprinting and correlation techniques and uncertainty modeling (phase II),” an initiative of the International Focus Group on Tephrochronology and Volcanism (INTAV) supported by the Stratigraphy and Chronology Commission of the International Union for Quaternary Research (INQUA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Lowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lowe, D.J., Alloway, B. (2014). Tephrochronology. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_19-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_19-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics