Skip to main content

Mass Spectrometry

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Definition

Any of a number of methods used to determine the spectrum of isotopic abundances in a given material based on the measurement of relative masses of atoms or molecules present in that material. As applied to scientific dating, mass spectrometry is most commonly used to determine abundances of parent and progeny isotopes in naturally radioactive decay systems that have half-lives of geological relevance (years to billions of years).

Introduction

Scientific methods for dating materials of geological interest commonly utilize natural radioactive isotopes that spontaneously transform to progeny isotopes at constant and well-known rates of decay. In order to use this property to estimate absolute ages, it is essential to accurately determine the abundances of both parent and progeny isotopes in a mineral or rock sample that has remained closed to isotopic exchange with its surroundings since its formation. Decay counting can be used to quantify abundances of short-lived...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Allen, J.S., 1947. An improved electron multiplier particle counter. Review of Scientific Instruments, 18, 739–749, doi:10.1063/1.1740838#blank. http://dx.doi.org/10.1063/1.1740838

  • Daly, N. R., 1960. Scintillation type mass spectrometer ion detector. Review of Scientific Instruments, 31, 264–267.

    Article  Google Scholar 

  • de Hoffman, E., 1996. Tandem mass spectrometry: a primer. Journal of Mass Spectrometry, 31, 129–137.

    Article  Google Scholar 

  • De Laeter, J., and Kurz, M. D., 2006. Alfred Nier and the sector field mass spectrometer. Journal of Mass Spectrometry, 41, 847–854.

    Article  Google Scholar 

  • Dempster, A. J., 1918. A new method of positive ray analysis. Physical Review, 11, 316–325.

    Article  Google Scholar 

  • Dickin, A. P., 2005. Radiogenic Isotope Geology, 2nd edn. Cambridge, UK: Cambridge University Press, 452 p.

    Book  Google Scholar 

  • Faure, G., 1986. Principles of Isotope Geology, 2nd edn. New York: Wiley, 589 p.

    Google Scholar 

  • Faure, G., and Mensing, T. M., 2005. Isotopes – Principles and Applications, 3rd edn. New York: Wiley, 897 p.

    Google Scholar 

  • Goldstein, S. J., and Stirling, C. H., 2003. Techniques for measuring uranium-series nuclides: 1992–2002. In Bourdon, B., Henderson, G. M., Lundstrom, C. C., and Turner, S. P. (eds.), Uranium-Series Geochemistry. Washington, DC: Mineralogical Society of America. Reviews of Mineralogy and Geochemistry, Vol. 52, pp. 533–576.

    Google Scholar 

  • Gross, J. H., 2011. Mass Spectrometry, 2nd edn. Berlin/Heidelberg: Springer, 754 p.

    Book  Google Scholar 

  • Ireland, T. R., 2013. Invited review article: recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry. Review of Scientific Instruments, 84, 011101, 21 p.

    Article  Google Scholar 

  • Ireland, T. R., Clement, S., Compston, W., Foster, J. J., Holden, P., Jenkins, B., Lanc, P., Schram, N., and Williams, I. S., 2008. The development of SHRIMP. Australian Journal of Earth Sciences, 55, 937–954.

    Article  Google Scholar 

  • Koch, J., and Günther, D., 2011. Review of the state-of the-art of laser ablation inductively coupled plasma mass spectrometry. Applied Spectroscopy, 65, 155A–162A.

    Article  Google Scholar 

  • KoÅ¡ler, J., and Sylvester, P. J., 2003. Present trends and future of zircon in geochronology: laser ablation ICPMS. In Hanchar, J. M., and Hoskin, P. W. O. (eds.), Zircon. Washington, DC: Mineralogical Society of America. Reviews in Mineralogy and Geochemistry, Vol. 53, pp. 243–275.

    Google Scholar 

  • Longerich, H., 2008. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS); an introduction. In Sylvester, P. J. (ed.), Laser Ablation-ICP-MS in the Earth Sciences, Current Practices and Outstanding Issues. Vancouver: Mineralogical Association of Canada. Mineralogical Association of Canada, Short Course Series, Vol. 40, pp. 1–18.

    Google Scholar 

  • Miller, P. E., and Denton, M. B., 1986. The quadrupole mass filter: basic operating concepts. Journal of Chemical Education, 63, 617–622.

    Article  Google Scholar 

  • Nier, A. O., 1940. A mass spectrometer for routine isotope abundance measurements. Review of Scientific Instruments, 11, 212–216.

    Article  Google Scholar 

  • Poenisch, A., 1976. Mass-spectrometer electron-multiplier improvement. Journal of Vacuum Science and Technology, 13, 1110–1112, doi:10.1116/1.569086#Link. http://dx.doi.org/10.1116/1.569086

  • Siebel, W., and van den Haute, P., 2007. Radiometric dating and tracing. In Nagy, S. (ed.), Radiochemistry and Nuclear Chemistry, Encyclopedia of Life Support Systems, Developed Under the Auspices of the UNESCO. Oxford, UK: Eolss Publishers. http://www.eolss.net/sample-chapters/c06/e6-104-02.pdf

  • Sinha, M. P., Neidholdt, E. L., Hurowitz, J., Sturhahn, W., Beard, B., and Hecht, M. H., 2011. Laser ablation-miniature mass spectrometer for elemental and isotopic analysis of rocks. Review of Scientific Instruments, 82, 094102, doi:10.1063/1.3626794, 7 p.

    Article  Google Scholar 

  • Sylvester, P. J. (ed.), 2008. Laser Ablation-ICP-MS in the Earth Sciences, Current Practices and Outstanding Issues. Vancouver: Mineralogical Association of Canada. Mineralogical Association of Canada, Short Course Series, Vol. 40, 348 p.

    Google Scholar 

  • White, W. M., 2013. Geochemistry. Chichester, UK: Wiley-Blackwell, Wiley, 668 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Paces .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science Business Media Dordrecht (outside the USA)

About this entry

Cite this entry

Paces, J.B., Weis, D., Ireland, T.R. (2014). Mass Spectrometry. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_182-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_182-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics