Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Mass Spectrometry

  • James B. Paces
  • Dominique Weis
  • Trevor R. Ireland
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_182-1


Any of a number of methods used to determine the spectrum of isotopic abundances in a given material based on the measurement of relative masses of atoms or molecules present in that material. As applied to scientific dating, mass spectrometry is most commonly used to determine abundances of parent and progeny isotopes in naturally radioactive decay systems that have half-lives of geological relevance (years to billions of years).


Scientific methods for dating materials of geological interest commonly utilize natural radioactive isotopes that spontaneously transform to progeny isotopes at constant and well-known rates of decay. In order to use this property to estimate absolute ages, it is essential to accurately determine the abundances of both parent and progeny isotopes in a mineral or rock sample that has remained closed to isotopic exchange with its surroundings since its formation. Decay counting can be used to quantify abundances of short-lived...


Thermal Ionization Mass Spectrometry Magnetic Sector Thermal Ionization Mass Spectrometer Flight Tube Magnetic Sector Mass Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Allen, J.S., 1947. An improved electron multiplier particle counter. Review of Scientific Instruments, 18, 739–749, doi:10.1063/1.1740838#blank. http://dx.doi.org/10.1063/1.1740838
  2. Daly, N. R., 1960. Scintillation type mass spectrometer ion detector. Review of Scientific Instruments, 31, 264–267.CrossRefGoogle Scholar
  3. de Hoffman, E., 1996. Tandem mass spectrometry: a primer. Journal of Mass Spectrometry, 31, 129–137.CrossRefGoogle Scholar
  4. De Laeter, J., and Kurz, M. D., 2006. Alfred Nier and the sector field mass spectrometer. Journal of Mass Spectrometry, 41, 847–854.CrossRefGoogle Scholar
  5. Dempster, A. J., 1918. A new method of positive ray analysis. Physical Review, 11, 316–325.CrossRefGoogle Scholar
  6. Dickin, A. P., 2005. Radiogenic Isotope Geology, 2nd edn. Cambridge, UK: Cambridge University Press, 452 p.CrossRefGoogle Scholar
  7. Faure, G., 1986. Principles of Isotope Geology, 2nd edn. New York: Wiley, 589 p.Google Scholar
  8. Faure, G., and Mensing, T. M., 2005. Isotopes – Principles and Applications, 3rd edn. New York: Wiley, 897 p.Google Scholar
  9. Goldstein, S. J., and Stirling, C. H., 2003. Techniques for measuring uranium-series nuclides: 1992–2002. In Bourdon, B., Henderson, G. M., Lundstrom, C. C., and Turner, S. P. (eds.), Uranium-Series Geochemistry. Washington, DC: Mineralogical Society of America. Reviews of Mineralogy and Geochemistry, Vol. 52, pp. 533–576.Google Scholar
  10. Gross, J. H., 2011. Mass Spectrometry, 2nd edn. Berlin/Heidelberg: Springer, 754 p.CrossRefGoogle Scholar
  11. Ireland, T. R., 2013. Invited review article: recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry. Review of Scientific Instruments, 84, 011101, 21 p.CrossRefGoogle Scholar
  12. Ireland, T. R., Clement, S., Compston, W., Foster, J. J., Holden, P., Jenkins, B., Lanc, P., Schram, N., and Williams, I. S., 2008. The development of SHRIMP. Australian Journal of Earth Sciences, 55, 937–954.CrossRefGoogle Scholar
  13. Koch, J., and Günther, D., 2011. Review of the state-of the-art of laser ablation inductively coupled plasma mass spectrometry. Applied Spectroscopy, 65, 155A–162A.CrossRefGoogle Scholar
  14. Košler, J., and Sylvester, P. J., 2003. Present trends and future of zircon in geochronology: laser ablation ICPMS. In Hanchar, J. M., and Hoskin, P. W. O. (eds.), Zircon. Washington, DC: Mineralogical Society of America. Reviews in Mineralogy and Geochemistry, Vol. 53, pp. 243–275.Google Scholar
  15. Longerich, H., 2008. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS); an introduction. In Sylvester, P. J. (ed.), Laser Ablation-ICP-MS in the Earth Sciences, Current Practices and Outstanding Issues. Vancouver: Mineralogical Association of Canada. Mineralogical Association of Canada, Short Course Series, Vol. 40, pp. 1–18.Google Scholar
  16. Miller, P. E., and Denton, M. B., 1986. The quadrupole mass filter: basic operating concepts. Journal of Chemical Education, 63, 617–622.CrossRefGoogle Scholar
  17. Nier, A. O., 1940. A mass spectrometer for routine isotope abundance measurements. Review of Scientific Instruments, 11, 212–216.CrossRefGoogle Scholar
  18. Poenisch, A., 1976. Mass-spectrometer electron-multiplier improvement. Journal of Vacuum Science and Technology, 13, 1110–1112, doi:10.1116/1.569086#Link. http://dx.doi.org/10.1116/1.569086
  19. Siebel, W., and van den Haute, P., 2007. Radiometric dating and tracing. In Nagy, S. (ed.), Radiochemistry and Nuclear Chemistry, Encyclopedia of Life Support Systems, Developed Under the Auspices of the UNESCO. Oxford, UK: Eolss Publishers. http://www.eolss.net/sample-chapters/c06/e6-104-02.pdf
  20. Sinha, M. P., Neidholdt, E. L., Hurowitz, J., Sturhahn, W., Beard, B., and Hecht, M. H., 2011. Laser ablation-miniature mass spectrometer for elemental and isotopic analysis of rocks. Review of Scientific Instruments, 82, 094102, doi:10.1063/1.3626794, 7 p.CrossRefGoogle Scholar
  21. Sylvester, P. J. (ed.), 2008. Laser Ablation-ICP-MS in the Earth Sciences, Current Practices and Outstanding Issues. Vancouver: Mineralogical Association of Canada. Mineralogical Association of Canada, Short Course Series, Vol. 40, 348 p.Google Scholar
  22. White, W. M., 2013. Geochemistry. Chichester, UK: Wiley-Blackwell, Wiley, 668 p.Google Scholar

Copyright information

© Springer Science Business Media Dordrecht (outside the USA) 2014

Authors and Affiliations

  • James B. Paces
    • 1
  • Dominique Weis
    • 2
  • Trevor R. Ireland
    • 3
  1. 1.Geosciences and Environmental Change Science CenterU.S. Geological SurveyDenverUSA
  2. 2.Department of Earth, Ocean, and Atmospheric Sciences, Pacific Centre for Isotopic and Geochemical ResearchThe University of British ColumbiaVancouverCanada
  3. 3.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia