Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

14C in Plant Macrofossils

  • Christine Hatté
  • A. J. Timothy Jull
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_168-1

Definition

We discuss 14C dating of plant macrofossils from different contexts and consider the various complicating effects of the history of the samples on the 14C measurement.

Introduction

Late Quaternary chronologies are commonly constructed using AMS 14C dating of plant macrofossils, because they are generally argued to provide the most reliable chronology. Although plant macrofossils are often relatively abundant and well preserved in a variety of site type, they are still potentially subject to a range of complications. Be they terrestrial or aquatic, plant macrofossils are prone to absorb CO2 of mixed origin during photosynthesis, to be reworked, contaminated by dissolved organic carbon and by modern carbon due to inappropriate storage and analysis. They can also be potentially impacted by measurement effects relating to small sample sizes.

We will overview different macrofossils here, in dry and then humid environments, will give few notes on insects and invertebrates commonly...

Keywords

Dissolve Inorganic Carbon Land Snail Plant Macrofossil Organic Matter Mineralization Chronological Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Abbott, M. B., and Stafford, T. W. J., 1996. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quaternary Research, 45, 300–311.CrossRefGoogle Scholar
  2. Björk, S., and Wohlfarth, B., 2001. 14C chronostratigraphic techniques in paleolimnology. In Last, W. M., and Smol, J. P. (eds.), Tracking Environmental Change Using Lake Sediments. Dordrecht: Kluwer. Basin Analysis, Coring and Chronological Techniques, Vol. 1.Google Scholar
  3. Blaauw, M., van der Plicht, J., and van Geel, B., 2004. Radiocarbon dating of bulk peat samples from raised bogs: non-existence of a previously reported “reservoir effect”? Quaternary Science Reviews, 23, 1537–1542.CrossRefGoogle Scholar
  4. Bronk, R. C., 2008. Radiocarbon dating: revolutions in understanding. Archaeometry, 50, 249–275.CrossRefGoogle Scholar
  5. Brown, T. A., and Southon, J. R., 1997. Corrections for contamination background in AMS 14C measurements. Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials and Atoms, 123, 208–213.CrossRefGoogle Scholar
  6. Brown, T. A., Nelson, D. E., Mathewes, R. W., Vogel, J. S., and Southon, J. R., 1989. Radiocarbon dating of pollen by accelerator mass spectrometry. Quaternary Research, 32, 205–212.CrossRefGoogle Scholar
  7. Colman, S. M., Jones, G. A., Rubin, M., King, J. W., Peck, J. A., and Orem, W. H., 1996. AMS radiocarbon analyses from Lake Baikal, Siberia: challenges of dating sediments from a large, oligotrophic lake. Quaternary Science Reviews, 15, 669–684.CrossRefGoogle Scholar
  8. Cook, A. C., Hainsworth, L. J., Sorey, M. L., Evans, W. C., and Southon, J. R., 2001a. Radiocarbon studies of plant leaves and tree rings from Mammoth Mountain, CA: a long-term record of magmatic CO2 release. Chemical Geology (Isotope Geoscience Section), 177, 117–131.Google Scholar
  9. Cook, G. T., Bonsall, C., Hedges, R. E. M., McSweeney, K., Boronean, V., and Pettin, P. B., 2001b. A freshwater diet-derived 14C reservoir effect at the Stone Age sites in the Iron Gates gorge. Radiocarbon, 43, 453–460.Google Scholar
  10. Doran, P. T., Berger, G. W., Lyons, W. B., Wharton, R. A., Jr., Davisson, M. L., Southon, J., and Dibb, J. E., 1999. Dating Quaternary lacustrine sediments in the McMurdo Dry Valleys, Antarctica. Palaeogeography Palaeoclimatology Palaeoecology, 147, 223–239.CrossRefGoogle Scholar
  11. Elias, S. A., Carrara, P. E., Toolin, L. J., and Jull, A. J. T., 1991. Revised age of deglaciation of Lake Emma based on new radiocarbon and macrofossil analyses. Quaternary Research, 36, 307–321.CrossRefGoogle Scholar
  12. Fallu, M.-A., Pietniz, R., Walker, I. R., and Overpeck, J. T., 2004. AMS 14Cdating of tundra lake sediments using chironomid head capsules. Journal of Paleolimnology, 31, 11–22.CrossRefGoogle Scholar
  13. Fontana, S. L., 2005. Holocene vegetation history and palaeoenvironmental conditions on the temperate Atlantic coast of Argentina, as inferred from multi-proxy lacustrine records. Journal of Paleolimnology, 34, 445–469.CrossRefGoogle Scholar
  14. Gauthier, C., and Hatté, C., 2008. Effects of handling, storage, and chemical treatments on delta C-13 values of terrestrial fossil organic matter. Geophysics, Geochemistry and Geosystem, 9. doi:10.1029/2008gc001967.Google Scholar
  15. Geyh, M. A., Krumhein, W. E., and Kudrass, H. R., 1974. Unreliable 14C dating of long-stored deep-sea sediment due to bacterial activity. Marine Geology, 17, M45–M50.CrossRefGoogle Scholar
  16. Goodfriend, G. A., Lain Ellis, G., and Toolin, L., 1999. Radiocarbon age anomalies in land snail shells from Texas: ontogenetic, individual, and geographic patterns of variation. Radiocarbon, 41, 149–156.Google Scholar
  17. Hajdas, I., Bonani, G., Zolitschka, B., Brauer, A., and Negendank, J. F. W., 1998. C-14 ages of terrestrial macrofossils from Lago Grande di Monticchio (Italy). Radiocarbon, 40, 803–807.Google Scholar
  18. Hatté, C., Bréheret, J.-G., Jacob, J., Argant, J., and Macaire, J.-J., 2013. Refining the Sarliève paleolake (France) Neolithic chronology by combining several radiocarbon approaches. Radiocarbon, 55(2–3), 979–992.Google Scholar
  19. Hodson, M. J., Parker, A. G., Leng, M. J., and Sloane, H. J., 2008. Silicon, oxygen and carbon isotope composition of wheat (Triticum aestivum L.) phytoliths: implications for palaeoecology and archaeology. Journal of Quaternary Science, 23, 331–339.CrossRefGoogle Scholar
  20. Jones, V. J., Battarbee, R. W., and Hedges, R. E. M., 1993. The use of chironomid remains for AMS 14C dating of lake sediments. The Holocene, 3, 161–163.CrossRefGoogle Scholar
  21. Jungner, H., Sonninen, E., Possnert, G., and Tolonen, K., 1995. Use of bomb-produced 14C to evaluate the amount of CO2 emanating from two peat-bogs in Finland. Radiocarbon, 37, 567–573.Google Scholar
  22. Kilian, M. R., Van der Pflicht, J., and van Geel, B., 1995. Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quaternary Science Reviews, 14, 959–966.CrossRefGoogle Scholar
  23. Kilian, M. R., Van der Pflicht, J., van Geel, B., and Goslar, T., 2002. Problematic 14C-AMS dates of pollen concentrates from Lake Gosciaz (Poland). Quaternary International, 88, 21–26.CrossRefGoogle Scholar
  24. Kuzucuoglu, C., Pastre, J. F., Black, S., Ercan, T., Fontugne, M., Guillou, H., Hatté, C., Karabiyikoglu, M., Orth, P., and Turkecan, A., 1998. Identification and dating of tephra layers from Quaternary sedimentary sequences of Inner Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85, 153–172.CrossRefGoogle Scholar
  25. Long, A., Davis, O. K., and Delanois, J., 1992. Separation and C-14 dating of pure pollen from lake-sediments – nanofossil AMS dating. Radiocarbon, 34, 557–560.Google Scholar
  26. MacDonald, G. M., Beukens, R. P., and Kieser, W. E., 1991. Radiocarbon dating of limnic sediments: a comparative analysis and discussion. Ecology, 72, 1150–1155.CrossRefGoogle Scholar
  27. Mensing, S., and Southon, J. R., 1999. A simple method to separate pollen for AMS radiocarbon dating and its application to lacustrine and marine sediments. Radiocarbon, 41, 1.Google Scholar
  28. Mulholland, S. C., and Prior, C. A., 1993. AMS radiocarbon dating of phytolith. In Pearsall, D. M. (ed.), Current Research in Phytolith Analysis: Applications in Archeology and Paleoecology. MASCA: Research Papers in Science and Archeology University of Pennsylvania Museum.Google Scholar
  29. Nakamura, T., Miyahara, H., Masuda, K., Menjo, H., Kuwana, K., Kimura, K., Okuno, M., Minami, M., Oda, H., and Rakowski, A., 2007. High precision 14C measurements and wiggle-match dating of tree-rings at Nagoya University. Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials and Atoms, 259, 408–413.CrossRefGoogle Scholar
  30. Neff, J. C., Finlay, J. C., Zimov, S. A., Davydov, S. P., Carrasco, J. J., Schuur, E. A. G., and Davydova, A. I., 2006. Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophysical Research Letters, 33, L23401.CrossRefGoogle Scholar
  31. Neulieb, T., Levac, E., Southon, J., Lewis, M., Pendea, I. F., Chmura, G., 2013. Potential pitfalls of pollen dating. Radiocarbon, 55(4), 1142–1155.Google Scholar
  32. Olsson, I. U., and Kaup, E., 2001. The varying radiocarbon activity of some recent submerged estonian plants grown in the early 1990s. Radiocarbon, 43, 809–820.Google Scholar
  33. Oswald, W. W., Anderson, P. M., Brown, T. A., Brubaker, L. B., Hu, F. S., Lozhkin, A. V., Tinner, W., and Kaltenrieder, P., 2005. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. The Holocene, 15, 758–767.CrossRefGoogle Scholar
  34. Pasquier-Cardin, A., Allard, P., Ferreira, T., Hatté, C., Coutinho, R., Fontugne, M. R., and Jaudon, M., 1999. Magma-derived CO2 emissions recorded in 14C and 13C content of plants growing in Furnas Caldera, Azores. Journal of Volcanology and Geothermal Research, 92, 195–207.CrossRefGoogle Scholar
  35. Piotrowska, N., Bluszcz, A., Demske, D., Granoszewski, W., and Heumann, G., 2004. Extraction and AMS radiocarbon dating of pollen from Lake Baikal sediments. Radiocarbon, 46, 181–187.Google Scholar
  36. Porch, Nick and Kershaw, A. Peter 2010, Comparative AMS 14C dating of plant macrofossils, beetles and pollen preparations from two late pleistocene sites in southeastern Australia, in Altered ecologies (Terra Australis 32): fire, climate and human influence on terrestrial landscapes, ANU E Press, Canberra, A.C.T., pp. 395–404.Google Scholar
  37. Saliège, J.-F., Zazzo, A., Hatté, C., and Gauthier, C., 2012. Radiocarbon dating in Petra: limitations and potential in semi-arid environments. In Mouton, M., and Schmid, S. (eds.), Men on the Rocks – The Formation of Nabataean Petra. Berlin: Logos Verlag.Google Scholar
  38. Santos, G. M., Alexandre, A., Coe, H. H. G., Reyerson, P. E., Southon, J. R., and De Carvalho, C. N., 2010. The phytolith 14C puzzle: a tale of background determinations and accuracy tests. Radiocarbon, 52, 113–128.Google Scholar
  39. Santos, G. M., Alexandre, A., Southon, J. R., Treseder, K. K., Corbineau, R., and Reyerson, P. E., 2012. Possible source of ancient carbon in phytolith concentrates from harvested grasses. Biogeosciences, 9, 1873–1884.CrossRefGoogle Scholar
  40. Stuiver, M., and Pearson, G. W., 1993. High-precision decadal calibration of the radiocarbon time scale, AD 1950–500 BC and 2500–6000 BC. Radiocarbon, 35(1), 1–23.Google Scholar
  41. Sullivan, L. A., and Parr, J. F., 2013. Comment on “Possible source of ancient carbon in phytolith concentrates from harvested grasses” by G.M. Santos et al. (2012). Biogeosciences, 10, 977–980.CrossRefGoogle Scholar
  42. Turney, C. S. M., Coope, G. R., Harkness, D. D., Lowe, J. J., and Walker, D. A., 2000. Implications for the dating of Wisconsinan (Weichselian) Late-Glacial events of systematic radiocarbon age differences between plant macrofossils from a site in SW Ireland. Quaternary Research, 53, 114–121.CrossRefGoogle Scholar
  43. Walker, M. J. C., Bryant, C. L., Coope, G. R., Harkness, D. D., Lowe, J. J., and Scott, E. M., 2001. Towards a radiocarbon chronology of the late-glacial: sample selection strategies. Radiocarbon, 43, 1007–1019.Google Scholar
  44. Wohlfarth, B., Skog, G,. Possnert, G., and Holmqvist, B.H., 1998. Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. Journal of Quaternary Science, 13, 137–145.Google Scholar
  45. Zazula, G. D., Schweger, C. E., Beaudouin, A. B., and McCourt, G. H., 2006. Macrofossil and pollen evidence for full-glacial steppe within an ecological mosaic along the Bluefish River, eastern Beringia. Quaternary International, 142–143, 2–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratoire des Sciences du Climat et de l’EnvironnementUMR8212 CEA-CNRS-UVSQ, Domaine du CNRSGif-sur-YvetteFrance
  2. 2.NSF Arizona AMS Laboratory and Department of GeosciencesUniversity of ArizonaTuconsUSA