Skip to main content

Category B: Planetary Surfaces (Cratering Rate)

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Synonyms

Bombardment history; Cratering statistics; Projectile flux

Definitions

Planetary surface: Interface between the solid (or liquid) material of a planet and either its atmosphere or the outer space. Actual planetary surfaces are found only on solid planetary bodies, such as the terrestrial planets, moons, or planetesimals.

Cratering rate: The rate at which craters of a given size form per time interval and surface unit.

Introduction

Planetary surfaces carry the imprint of geological evolution of the specific planetary body and, when dated, allow estimates of the timing and rates of geological processes. Establishment of the geological evolutionary history (chronostratigraphy) of solid-surface planetary bodies is based on the most common surface-modifying geological process, impact cratering. The crater density indicates a relative sequence of events, and when calibrated by radiometric dating of returned samples (e.g., Apollo samples from the Moon), crater density-based relative...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Canup, R. M., 2004. Simulations of a late lunar-forming impact. Icarus, 168(2), 433–456.

    Article  Google Scholar 

  • Crater Analysis Techniques Working Group, Arvidson, R., Boyce, J., Chapman, C., Cintala, M., Fulchignoni, M., Moore, H., Neukum, G., Schultz, P., Soderblom, L., Strom, R., Woronow, A., and Young, R., 1979. Standard techniques for presentation and analysis of crater size-frequency data. Icarus, 37, 467–474.

    Article  Google Scholar 

  • Fernandes, V. A., Fritz, J., Weiss, B. P., Garrick-Bethell, I., and Shuster, D. L., 2013. The bombardment history of the Moon as recorded by 40Ar-39Ar chronology. Meteoritics & Planetary Science, 48(2), 241–269.

    Article  Google Scholar 

  • Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A., 2005. Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Science, 435, 466–469.

    Google Scholar 

  • Hartmann, W. K., 1970. Note: lunar cratering chronology. Icarus, 13, 299.

    Article  Google Scholar 

  • Hartmann, W. K., 1999. Martian cratering VI. Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor. Meteoritics and Planetary Science, 34, 167–177.

    Article  Google Scholar 

  • Head, J. W., III, Fassett, C. I., Kadish, S. J., Smith, D. E., Zuber, M. T., Neumann, G. A., and Mazarico, E., 2010. Global distribution of large lunar craters: implications for resurfacing and impactor populations. Science, 329(5998), 1504–1507.

    Article  Google Scholar 

  • Ivanov, B. A., Neukum, G., Bottke, W. F. Jr., Hartmann, W. K., 2002. The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate. In Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P. (eds.) Asteroids III. The University of Arizona Press: Tucson, Arizona, USA, 89–101.

    Google Scholar 

  • Müller, R. D., Roest, W. R., Royer, J.-Y., Gahagan, L. M., and Sclater, J. G., 1997. Digital isochrons of the world’s ocean floor. Journal of Geophysical Research, 102, 3211–3214.

    Article  Google Scholar 

  • Neukum, G., Koenig, B., and Arkani-Hamed, J., 1975. A study of lunar impact crater size-distributions. Moon, 12, 201–229.

    Article  Google Scholar 

  • Neukum, G., Hartmann, W. K., and Ivanov, B. A., 2001. Cratering records in the inner solar system in relation to the Lunar reference system. In Kallenbach, R., Geiss, J., and Hartmann, W. K. (eds.), Chronology and Evolution of Mars. Dordrecht: Kluwer, pp. 55–86.

    Chapter  Google Scholar 

  • Öpik, E. J., 1960. Interplanetary Encounters: Close-Range Gravitational Interactions. Amsterdam: Elsevier, p. 155.

    Google Scholar 

  • Shoemaker, E. M., Hackman, R. J., and Eggleton, R. E., 1962. Interplanetary correlation of geologic time. Advances in the Astronautical Sciences, 8, 70–89.

    Google Scholar 

  • Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H. F., 2005. Origin of the orbital architecture of the giant planets of the solar system. Science, 435, 459–461.

    Google Scholar 

  • Werner, S. C., and Tanaka, K. L., 2011. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus, 215(2), 603–607.

    Article  Google Scholar 

  • Werner, S. C., and Ivanov, B. A., 2014. Exogenic dynamics, cratering and surface ages. In Spohn, T., (ed.), Treaties on Geophysics. Elsevier: Amsterdam, The Netherlands (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie C. Werner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Werner, S.C., Reimold, W.U. (2013). Category B: Planetary Surfaces (Cratering Rate). In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_167-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_167-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics