Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Category B: Planetary Surfaces (Cratering Rate)

  • Stephanie C. Werner
  • Wolf Uwe Reimold
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_167-1

Synonyms

Definitions

Planetary surface: Interface between the solid (or liquid) material of a planet and either its atmosphere or the outer space. Actual planetary surfaces are found only on solid planetary bodies, such as the terrestrial planets, moons, or planetesimals.

Cratering rate: The rate at which craters of a given size form per time interval and surface unit.

Introduction

Planetary surfaces carry the imprint of geological evolution of the specific planetary body and, when dated, allow estimates of the timing and rates of geological processes. Establishment of the geological evolutionary history (chronostratigraphy) of solid-surface planetary bodies is based on the most common surface-modifying geological process, impact cratering. The crater density indicates a relative sequence of events, and when calibrated by radiometric dating of returned samples (e.g., Apollo samples from the Moon), crater density-based relative...

Keywords

Lunar Surface Planetary System Planetary Surface Planetary Body Crater Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Canup, R. M., 2004. Simulations of a late lunar-forming impact. Icarus, 168(2), 433–456.CrossRefGoogle Scholar
  2. Crater Analysis Techniques Working Group, Arvidson, R., Boyce, J., Chapman, C., Cintala, M., Fulchignoni, M., Moore, H., Neukum, G., Schultz, P., Soderblom, L., Strom, R., Woronow, A., and Young, R., 1979. Standard techniques for presentation and analysis of crater size-frequency data. Icarus, 37, 467–474.CrossRefGoogle Scholar
  3. Fernandes, V. A., Fritz, J., Weiss, B. P., Garrick-Bethell, I., and Shuster, D. L., 2013. The bombardment history of the Moon as recorded by 40Ar-39Ar chronology. Meteoritics & Planetary Science, 48(2), 241–269.CrossRefGoogle Scholar
  4. Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A., 2005. Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Science, 435, 466–469.Google Scholar
  5. Hartmann, W. K., 1970. Note: lunar cratering chronology. Icarus, 13, 299.CrossRefGoogle Scholar
  6. Hartmann, W. K., 1999. Martian cratering VI. Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor. Meteoritics and Planetary Science, 34, 167–177.CrossRefGoogle Scholar
  7. Head, J. W., III, Fassett, C. I., Kadish, S. J., Smith, D. E., Zuber, M. T., Neumann, G. A., and Mazarico, E., 2010. Global distribution of large lunar craters: implications for resurfacing and impactor populations. Science, 329(5998), 1504–1507.CrossRefGoogle Scholar
  8. Ivanov, B. A., Neukum, G., Bottke, W. F. Jr., Hartmann, W. K., 2002. The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate. In Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P. (eds.) Asteroids III. The University of Arizona Press: Tucson, Arizona, USA, 89–101.Google Scholar
  9. Müller, R. D., Roest, W. R., Royer, J.-Y., Gahagan, L. M., and Sclater, J. G., 1997. Digital isochrons of the world’s ocean floor. Journal of Geophysical Research, 102, 3211–3214.CrossRefGoogle Scholar
  10. Neukum, G., Koenig, B., and Arkani-Hamed, J., 1975. A study of lunar impact crater size-distributions. Moon, 12, 201–229.CrossRefGoogle Scholar
  11. Neukum, G., Hartmann, W. K., and Ivanov, B. A., 2001. Cratering records in the inner solar system in relation to the Lunar reference system. In Kallenbach, R., Geiss, J., and Hartmann, W. K. (eds.), Chronology and Evolution of Mars. Dordrecht: Kluwer, pp. 55–86.CrossRefGoogle Scholar
  12. Öpik, E. J., 1960. Interplanetary Encounters: Close-Range Gravitational Interactions. Amsterdam: Elsevier, p. 155.Google Scholar
  13. Shoemaker, E. M., Hackman, R. J., and Eggleton, R. E., 1962. Interplanetary correlation of geologic time. Advances in the Astronautical Sciences, 8, 70–89.Google Scholar
  14. Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H. F., 2005. Origin of the orbital architecture of the giant planets of the solar system. Science, 435, 459–461.Google Scholar
  15. Werner, S. C., and Tanaka, K. L., 2011. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus, 215(2), 603–607.CrossRefGoogle Scholar
  16. Werner, S. C., and Ivanov, B. A., 2014. Exogenic dynamics, cratering and surface ages. In Spohn, T., (ed.), Treaties on Geophysics. Elsevier: Amsterdam, The Netherlands (in press).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centre for Earth Evolution and DynamicsUniversity of OsloOsloNorway
  2. 2.Museum für NaturkundeBerlin and Humboldt-Universität zuBerlinGermany