Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Meteorites (36Cl)

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_164-1

Definition

Cosmogenic nuclide: A stable or radioactive isotope that is produced by the interaction of terrestrial or extraterrestrial materials with galactic and/or solar cosmic rays.

Meteorites: An extraterrestrial rock or iron that survived passage through the atmosphere and landed on Earth. Most meteorites are pieces of collisional debris from asteroids or comets, although a small percentage are fragments of the moon and Mars.

Introduction

Cosmogenic nuclides provide information on a meteorite’s history, specifically during their travel through space as meter-sized objects, in which they were exposed to cosmic rays. More than 50 different cosmogenic nuclides have been detected in meteorites, including the stable isotopes of the noble gases, He, Ne, Ar, Kr, and Xe, and radioactive nuclides with half-lives ranging from less than 1 day ( 24Na) to 1.28 Ga ( 40K). The measured concentrations of cosmogenic nuclides in meteorites provide information on the total exposure time of meteorites...

Keywords

Accelerator Mass Spectrometry Iron Meteorite 10Be Concentration Cosmogenic Nuclide Cosmogenic Radionuclide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Bibliography

  1. Albrecht, A., Schnabel, C., Vogt, S., Xue, S., Herzog, G. F., Begemann, F., Weber, H. W., Middleton, R., Fink, D., and Klein, J., 2000. Light noble gases and cosmogenic radionuclides in Estherville, Budulan and other mesosiderites: implications for exposure histories and production rates. Meteoritics & Planetary Science, 35, 975–986.CrossRefGoogle Scholar
  2. Ammon, K., Masarik, J., and Leya, I., 2009. New model calculations for the production rates of cosmogenic nuclides in iron meteorites. Meteoritics & Planetary Science, 44, 485–503.CrossRefGoogle Scholar
  3. Begemann, F., Weber, H. W., Vilcsek, E., and Hintenberger, H., 1976. Rare gases and 36Cl in stony-iron meteorites: cosmogenic elemental production rates, exposure ages, diffusion losses and thermal histories. Geochimica et Cosmochimica Acta, 40, 353–368.CrossRefGoogle Scholar
  4. Bland, P. A., Sexton, A. S., Jull, A. J. T., Bevan, A. W. R., Berry, F. J., Thornley, D. M., Astin, T. R., Britt, D. T., and Pillinger, C. T., 1998. Climate and rock weathering: a study of terrestrial age dated ordinary chondritic meteorites from hot desert regions. Geochimica et Cosmochimica Acta, 62, 3169–3184.CrossRefGoogle Scholar
  5. Boeckl, R., 1972. Terrestrial age of nineteen stony meteorites derived from their radiocarbon content. Nature, 236, 25–26.CrossRefGoogle Scholar
  6. Chang, C., and Wänke, H., 1969. Beryllium-10 in iron meteorites, their cosmic ray exposure and terrestrial ages. In Millman, P. M. (ed.), Meteorite Research. Dordrecht: Reidel Publishing Company.Google Scholar
  7. Eberhardt, P., Eugster, O., Geiss, J., and Marti, K., 1966. Rare gas measurements in 30 stone meteorites. Zeitschrift für Naturforschung, 21a, 414–426.Google Scholar
  8. Eugster, O., 1988. Cosmic-ray production rates of 3He, 21Ne, 38Ar, 83Kr and 126Xe in chondrites based on 81Kr-Kr exposure ages. Geochimica et Cosmochimica Acta, 52, 1649–1662.CrossRefGoogle Scholar
  9. Eugster, O., and Michel, T., 1995. Common asteroid break-up events of eucrites, diogenites and howardites and cosmic-ray production rates for noble gases in achondrites. Geochimica et Cosmochimica Acta, 59, 177–199.CrossRefGoogle Scholar
  10. Eugster, O., Eberhardt, P., and Geiss, J., 1967. 81Kr in meteorites and 81Kr radiation ages. Earth and Planetary Science Letters, 2, 77–82.CrossRefGoogle Scholar
  11. Evans, J. C., Reeves, J. H., Rancitelli, L. A., and Bogard, D. D., 1982. Cosmogenic nuclides in recently fallen meteorites – evidence for galactic cosmic ray variations during the period 1967–1978. Journal of Geophysical Research, 87, 5577–5587.CrossRefGoogle Scholar
  12. Fink, D., Klein, J., Middleton, R., Vogt, S., and Herzog, G. F., 1991. 41Ca in iron falls, Grant and Estherville: production rates and related exposure age calculations. Earth and Planetary Science Letters, 107, 115–128.CrossRefGoogle Scholar
  13. Finkel, R. C., Kohl, C. P., Marti, K., and Martinek, B., 1978. The cosmic ray record of the San Juan Capistrano meteorite. Geochimica et Cosmochimica Acta, 42, 241–250.CrossRefGoogle Scholar
  14. Freundel, M., Schultz, L., and Reedy, R. C., 1986. Terrestrial 81Kr-Kr ages of Antarctic meteorites. Geochimica et Cosmochimica Acta, 50, 2663–2673.CrossRefGoogle Scholar
  15. Graf, T., and Marti, K., 1994. Collisional records in LL-chondrites. Meteoritics, 29, 643–648.CrossRefGoogle Scholar
  16. Graf, T., and Marti, K., 1995. Collisional history of H chondrites. Journal of Geophysical Research, 100, 21247–21263.CrossRefGoogle Scholar
  17. Graf, T., Vogt, S., Bonani, G., Herpers, U., Signer, P., Suter, M., Wieler, R., and Wölfli, W., 1987. Depth dependence of 10Be and 26Al production rates in the iron meteorite Grant. Nuclear Instruments and Methods in Physics Research, B29, 262–265.CrossRefGoogle Scholar
  18. Graf, T., Signer, P., Wieler, R., Herpers, U., Sarafin, R., Vogt, S., Fieni, C., Pellas, P., Bonani, G., Suter, M., and Wölfli, W., 1990a. Cosmogenic nuclides and nuclear tracks in the chondrite Knyahinya. Geochimica et Cosmochimica Acta, 54, 2511–2520.CrossRefGoogle Scholar
  19. Graf, T., Baur, H., and Signer, P., 1990b. A model for the production of cosmogenic nuclides in chondrites. Geochimica et Cosmochimica Acta, 54, 2521–2534.CrossRefGoogle Scholar
  20. Graf, T., Caffee, M. W., Marti, K., Nishiizumi, K., and Ponganis, K. V., 2001. Dating collisional events: 36Cl–36Ar exposure ages of H-chondritic metal. Icarus, 150, 181–188.CrossRefGoogle Scholar
  21. Hampel, W., and Schaeffer, O. A., 1979. Al-26 in iron meteorites and the constancy of cosmic ray intensity in the past. Earth and Planetary Science Letters, 42, 348–358.CrossRefGoogle Scholar
  22. Herzog, G. F., 2005. Cosmic-ray exposure ages of meteorites. In A. M. Davis (ed.), Meteorites, Comets and Planets: Treatise on Geochemistry, Volume 1 (Exec. Ed. Holland, H. D., and Turekian, K. K.), Elsevier, Amsterdam, The Netherlands, pp. 347–380.Google Scholar
  23. Herzog, G. F., and Anders, E., 1971a. Radiation age of the Norton County meteorite. Geochimica et Cosmochimica Acta, 35, 239–244.CrossRefGoogle Scholar
  24. Herzog, G. F., and Anders, E., 1971b. Absolute scale for radiation ages of stony meteorites. Geochimica et Cosmochimica Acta, 35, 605–611.CrossRefGoogle Scholar
  25. Honda, M., Caffee, M. W., Miura, Y. N., Nagai, H., Nagao, K., and Nishiizumi, K., 2002. Cosmogenic nuclides in the Brenham pallasite. Meteoritics & Planetary Science, 37, 1711–1728.CrossRefGoogle Scholar
  26. Jull, A. J. T., Donahue, D. J., and Linick, T. W., 1989. Carbon-14 activities in recently fallen meteorites and Antarctic meteorites. Geochimica et Cosmochimica Acta, 53, 2095–2100.CrossRefGoogle Scholar
  27. Jull, A. J. T., Wlotzka, F., Palme, H., and Donahue, D. J., 1990. Distribution of terrestrial age and petrologic type of meteorites from western Libya. Geochimica et Cosmochimica Acta, 54, 2895–2898.CrossRefGoogle Scholar
  28. Jull, A. J. T., McHargue, L. R., Bland, P. A., Greenwood, R. C., Bevan, A. W. R., Kim, K. J., LaMotta, S. E., and Johnson, J. A., 2010. Terrestrial ages of meteorites from the Nullarbor region, Australia, based on 14C and 14C–10Be measurements. Meteoritics & Planetary Science, 45, 1271–1283.CrossRefGoogle Scholar
  29. Klein, J., Fink, D., Middleton, R., Nishiizumi, K., and Arnold, J. R., 1991. Determination of half-life of 41Ca from measurements of Antarctic meteorites. Earth and Planetary Science Letters, 103, 79–83.CrossRefGoogle Scholar
  30. Kring, D. A., Jull, A. J. T., McHargue, L. R., Bland, P. A., Hill, D. H., and Berry, F. J., 2001. Gold Basin meteorite strewn field, Mojave Desert: relict of a small Late Pleistocene impact event. Meteoritics & Planetary Science, 36, 1057–1066.CrossRefGoogle Scholar
  31. Lavielle, B., and Marti, K., 1988. Cosmic-ray-produced Kr in St. Severin core AIII. In Proceedings 18th Lunar and Planetary Science Conference, Houston, Texas, pp. 565–572.Google Scholar
  32. Lavielle, B., Marti, K., Jeannot, J.-P., Nishiizumi, K., and Caffee, M. W., 1999. The 36Cl–36Ar–40K–41K records and cosmic-ray production in iron meteorites. Earth and Planetary Science Letters, 170, 93–104.CrossRefGoogle Scholar
  33. Leya, I., and Masarik, J., 2009. Cosmogenic nuclides in stony meteorites revisited. Meteoritics & Planetary Science, 44, 1061–1086.CrossRefGoogle Scholar
  34. Leya, I., Lange, H.-J., Neumann, S., Wieler, R., and Michel, R., 2000. The production of cosmogenic nuclides in stony meteoroids by galactic cosmic ray particles. Meteoritics & Planetary Science, 35, 259–286.CrossRefGoogle Scholar
  35. Leya, I., Wieler, R., Aggrey, K., Herzog, G. F., Schnabel, C., Metzler, K., Hildebrand, A. R., Bouchard, M., Jull, A. J. T., Andrews, H. R., Wang, M.-S., Ferko, T. E., Lipschutz, M. E., Wacker, J. F., Neumann, S., and Michel, R., 2001. Exposure history of the St-Robert (H5) fall. Meteoritics & Planetary Science, 36, 1479–1494.CrossRefGoogle Scholar
  36. Leya, I., Gilabert, E., Lavielle, B., Wiechert, U., and Wieler, R., 2004. Production rates for cosmogenic krypton and argon isotopes in H-chondrites with known 36Cl–36Ar ages. Antarctic Meteorite Research, 17, 185–199.Google Scholar
  37. Lipschutz, M. E., Signer, P., and Anders, E., 1965. Cosmic ray exposure ages of iron meteorites by the Ne21/Al26 method. Journal of Geophysical Research, 6, 1473–1489.CrossRefGoogle Scholar
  38. Marti, K., 1967. Mass-spectrometric detection of cosmic-ray produced 81Kr in meteorites and the possibility of Kr-Kr dating. Physical Review Letters, 18, 264–266.CrossRefGoogle Scholar
  39. Marti, K., and Graf, T., 1992. Cosmic-ray exposure history of ordinary chondrites. Annual Review of Earth and Planetary Sciences, 20, 221–243.CrossRefGoogle Scholar
  40. Marti, K., and Lugmair, G. W., 1971. Kr81-Kr and K-Ar40 ages, cosmic-ray spallation products and neutron effects in lunar samples from Oceanus Procellarum. Proceedings of the Lunar Science Conference, 2, 1591–1605.Google Scholar
  41. Masarik, J., Nishiizumi, K., and Reedy, R. C., 2001. Production rates of cosmogenic helium-3, neon-21 and neon-22 in ordinary chondrites and the lunar surface. Meteoritics & Planetary Science, 36, 643–650.CrossRefGoogle Scholar
  42. Nagai, H., Honda, M., Imamura, M., and Kobayashi, K., 1993. Cosmogenic 10Be and 26Al in metal, carbon and silicate of meteorites. Geochimica et Cosmochimica Acta, 57, 3705–3723.CrossRefGoogle Scholar
  43. Nishiizumi, K., 1995. Terrestrial ages of meteorites from cold and cold regions. In L. Schultz, J. O. Annexstad, and M. E. Zolensky (eds.), Workshop on Meteorites from Cold and Hot Deserts. Houston: Lunar and Planetary Institute. LPI Technical Report No. 95-02, pp. 53–55.Google Scholar
  44. Nishiizumi, K., and Caffee, M. W., 1998. Measurements of cosmogenic calcium-41 and calcium-41/chlorine-36 terrestrial ages (abstract). Meteoritics & Planetary Science, 33, A117.Google Scholar
  45. Nishiizumi, K., Klein, J., Middleton, R., and Arnold, J. R., 1987. Long-lived cosmogenic nuclides in the Derrick Peak and Lazarev iron meteorites. Lunar and Planetary Science Conference, 18, 724–725.Google Scholar
  46. Nishiizumi, K., Regnier, S., and Marti, K., 1980. Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past. Earth and Planetary Science Letters, 56, 156–170.CrossRefGoogle Scholar
  47. Nishiizumi, K., Elmore, D., and Kubik, P. W., 1989. Update on terrestrial ages of Antarctic meteorites. Earth and Planetary Science Letters, 93, 299–313.CrossRefGoogle Scholar
  48. Nishiizumi, K., Okazaki, R., Park, J., Nagao, K., Masarik, J., and Finkel, R. C., 2002. Exposure and terrestrial histories of Dhofar 019 Martian meteorite. 33rd Lunar and Planetary Science Conference, Houston, Texas, Abstract #1366 (CD-ROM).Google Scholar
  49. Rai, V. K., Murty, S. V. S., and Ott, U., 2003. Noble gases in ureilites: cosmogenic, radiogenic and trapped components. Geochimica et Cosmochimica Acta, 67, 4435–4456.CrossRefGoogle Scholar
  50. Reedy, R. C., 1985. A model for GCR-particle fluxes in stony meteorites and production rates of cosmogenic nuclides. Journal of Geophysical Research, 90, C722–C728.CrossRefGoogle Scholar
  51. Schaeffer, O. A., and Heymann, D., 1965. Comparison of 36Cl–36Ar and 39Ar–38Ar cosmic-ray exposure ages of dated fall iron meteorites. Journal of Geophysical Research, 70, 215–224.CrossRefGoogle Scholar
  52. Scherer, P., and Schultz, L., 2000. Noble gas record, collisional history, and pairing of CV, CO, CK and other carbonaceous chondrites. Meteoritics & Planetary Science, 35, 145–153.CrossRefGoogle Scholar
  53. Scherer, P., Herrmann, S., and Schultz, L., 1998. Noble gases in twenty-one Saharan LL-chondrites: exposure ages and possible pairings. Meteoritics & Planetary Science, 33, 259–265.CrossRefGoogle Scholar
  54. Shukolyukov, A., and Begemann, F., 1996. Cosmogenic and fissiogenic noble gases and 81Kr-Kr exposure age clusters of eucrites. Meteoritics & Planetary Science, 31, 60–72.CrossRefGoogle Scholar
  55. Signer, P., Baur, H., Derksen, U., Etique, P., Funk, H., Horn, P., and Wieler, R., 1977. Helium, neon, and argon records of lunar soil evolution. Proceedings of the Lunar Planetary Science Conference, 8, 3657–3683.Google Scholar
  56. Welten, K. C., Lindner, L., Van der Borg, K., Loeken, T., Scherer, P., and Schultz, L., 1997. Cosmic-ray exposure ages of diogenites and the recent collisional history of the howardite, eucrite and diogenite parent body/bodies. Meteoritics & Planetary Science, 32, 891–902.CrossRefGoogle Scholar
  57. Welten, K. C., Nishiizumi, K., Masarik, J., Caffee, M. W., Jull, A. J. T., Klandrud, S. E., and Wieler, R., 2001. Cosmic-ray exposure history of two Frontier Mountain H-chondrite showers from spallation and neutron-capture products. Meteoritics & Planetary Science, 36, 301–317.CrossRefGoogle Scholar
  58. Welten, K. C., Caffee, M. W., Leya, I., Masarik, J., Nishiizumi, K., and Wieler, R., 2003. Noble gases and cosmogenic radionuclides in the Gold Basin L4-chondrite shower: thermal history, exposure history and pre-atmospheric size. Meteoritics & Planetary Science, 38, 157–173.CrossRefGoogle Scholar
  59. Welten, K. C., Nishiizumi, K., Finkel, R. C., Hillegonds, D. J., Jull, A. J. T., Franke, L., and Schultz, L., 2004. Exposure history and terrestrial ages of ordinary chondrites from the Dar al Gani region, Libya. Meteoritics & Planetary Science, 39, 481–498.CrossRefGoogle Scholar
  60. Welten, K. C., Nishiizumi, K., Caffee, M. W., Hillegonds, D. J., Johnson, J. A., Jull, A. J. T., Wieler, R., and Folco, L., 2006. Terrestrial age, pairing and concentration mechanism of Antarctic chondrites from Frontier Mountain, northern Victoria Land. Meteoritics and Planetary Science, 41, 1081–1094.CrossRefGoogle Scholar
  61. Welten, K. C., Folco, L., Nishiizumi, K., Caffee, M. W., Grimberg, A., Meier, M. M. M., and Kober, F., 2008. Meteoritic and bedrock constraints on the glacial history of Frontier Mountain in northern Victoria Land, Antarctica. Earth and Planetary Science Letters, 270, 308–315.CrossRefGoogle Scholar
  62. Welten, K. C., Caffee, M. W., Hillegonds, D. J., McCoy, T. J., Masarik, J., and Nishiizumi, K., 2011. Cosmogenic radionuclides in L5 and LL5 chondrites from Queen Alexandra Range, Antarctica: identification of a large L/LL5 chondrite shower with a pre-atmospheric mass of ∼50 metric tons. Meteoritics & Planetary Science, 46, 177–198.CrossRefGoogle Scholar
  63. Wieler, R., Graf, T., Signer, P., Vogt, S., Herzog, G. F., Tuniz, C., Fink, D., Fifield, L. K., Klein, J., Middleton, R., Jull, A. J. T., Pellas, P., Masarik, J., and Dreibus, G., 1996. Exposure history of the Torino meteorite. Meteoritics & Planetary Science, 31, 265–272.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA