Skip to main content

Lacustrine Environments (14C)

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Synonyms

Radiocarbon

Definition

Lacustrine. Having to do with any part of a lake system.

Introduction

Lakes are extremely powerful archives of climate and environmental information, because they record changes in the landscape around them, and the records they preserve are thus directly relevant to the activities and environments of human societies (e.g., Adams et al. 2008). Lakes commonly have very high sedimentation rates (5–20 years/cm) and preserve biological, geochemical, and sedimentary proxies and therefore may contain highly detailed records of past change. However, lakes are also dynamic sedimentary systems, and steady, continuous sedimentation may be disrupted by floods, lake-level changes, slope failures, and seismic shaking (e.g., Smith et al. 2013). Along with sedimentary fabric, radiometric dating is the best way to identify missing or repeated sections (Grimm 2011) and to identify and quantify changes in sedimentation rate.

Radiocarbon dating is the technique most often...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abbott, M. B., and Stafford, T. W., Jr., 1996. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quaternary Research, 45, 300–311.

    Article  Google Scholar 

  • Adams, K. D., Goebel, T., Graf, K., Smith, G. M., Camp, A. J., Briggs, R. W., and Rhode, D., 2008. Late Pleistocene and early Holocene lake-level fluctuations in the Lahontan basin, Nevada: Implications for the distribution of archaeological sites. Geoarchaeology, 23, 608–643.

    Article  Google Scholar 

  • Alberic, P., Jezequel, D., Bergonzini, L., Chapron, E., Viollier, E., Massault, M., and Michard, G., 2013. Carbon cycling and organic radiocarbon reservoir effect in a meromictic crater lake (Lac Pavin, Puy-de-Dome, France). Radiocarbon, 55, 1029–1042.

    Article  Google Scholar 

  • Blaauw, M., and Christen, J. A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6, 457–474.

    Article  Google Scholar 

  • Blaauw, M., van Geel, B., Kristen, I., Plessen, B., Lyaruu, A., Engstrom, D. R., van der Plicht, J., and Verschuren, D., 2011. High-resolution 14C dating of a 25,000-year lake-sediment record from equatorial East Africa. Quaternary Science Reviews, 30, 3043–3059.

    Article  Google Scholar 

  • Bronk Ramsey, C., 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon, 37, 425–430.

    Google Scholar 

  • Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337–360.

    Google Scholar 

  • Bronk Ramsey, C., and Lee, S., 2013. Recent and planned developments of the program OxCal. Radiocarbon, 55, 720–730.

    Google Scholar 

  • Broecker, W. S., and Walton, A., 1959. The geochemistry of C14 in fresh-water systems. Geochimica et Cosmochimica Acta, 16, 15–38.

    Article  Google Scholar 

  • Brown, T. A., Farwell, G. W., Grootes, P. M., and Schmidt, F. H., 1992. Radiocarbon AMS dating of pollen extracted from peat samples. Radiocarbon, 34, 550–556.

    Google Scholar 

  • Colman, S. M., Jones, G. A., Rubin, M., King, J. W., Peck, J. A., and Orem, W. H., 1996. AMS radiocarbon analyses from Lake Baikal, Siberia: challenges of dating sediments from a large, oligotrophic lake. Quaternary Science Reviews, 15, 669–684.

    Article  Google Scholar 

  • Deevey, E. S., Jr., Gross, M. S., Hutchinson, G. E., and Kraybill, H. L., 1954. The natural C14 contents of materials from hard-water lakes. Proceedings of the National Academy of Science, 40, 285–288.

    Article  Google Scholar 

  • Grimm, E. C., Maher, L. J., Jr., and Nelson, D. M., 2009. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quaternary Research, 72, 301–308.

    Article  Google Scholar 

  • Grimm, E. C., 2011. High-resolution age model based on AMS radiocarbon ages for Kettle Lake, North Dakota, USA. Radiocarbon, 53, 39–53.

    Google Scholar 

  • Jull, A. J. T., Burr, G. S., Zhou, W., Cheng, P., Song, S. H., Leonard, A. G., Cheng, L., and An, Z. S., 2013. 14C measurements of dissolved inorganic and organic carbon in Qinghai Lake and inflowing rivers (NE Tibet, Qinghai Plateau), China. Radiocarbon, 56, 1115–1127.

    Article  Google Scholar 

  • Marty, J. E., and Myrbo, A., in press. Radiocarbon dating suitability of aquatic plant macrofossils. Journal of Paleolimnology, doi: 10.1007/210933-014-9796-0.

    Google Scholar 

  • Mensing, S. A., and Southon, J. R., 1999. A simple method to separate pollen for AMS radiocarbon dating and its application to lacustrine and marine sediments. Radiocarbon, 41, 1–8.

    Google Scholar 

  • Myrbo, A., Morrison, A., and McEwan, R., 2011. Tool for microscopic identification (TMI). http://tmi.laccore.umn.edu. Accessed on 28 Sept 2014.

  • Neulieb, T., Levac, E., Southon, J., Lewis, M., Pendea, I. F., and Chmura, G. L., 2013. Potential pitfalls of pollen dating. Radiocarbon, 55, 1142–1155.

    Article  Google Scholar 

  • Newnham, R. M., Vandergoes, M. J., Garnett, M. H., Lowe, D. J., Prior, C., and Almond, P. C., 2007. Test of AMS 14C dating of pollen concentrates using tephrochronology. Journal of Quaternary Science, 22, 37–51.

    Article  Google Scholar 

  • Oremland, R. S., Miller, L. G., and Whiticar, M. J., 1987. Sources and flux of natural gases from Mono Lake, California. Geochimica et Cosmochimica Acta, 51, 2915–2929.

    Article  Google Scholar 

  • Pigati, J. S., Rech, J. A., and Nekola, J. C., 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology, 5, 519–532.

    Article  Google Scholar 

  • Plazcek, C., Quade, J., and Patchett, P. J., 2006. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin, 118, 515–532.

    Article  Google Scholar 

  • Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55, 1869–1887.

    Article  Google Scholar 

  • Saulnier-Talbot, E., Pienitz, R., and Stafford, T. W., Jr., 2009. Establishing Holocene sediment core chronologies for northern Ungava lakes, Canada, using humic acids (AMS 14C) and 210Pb. Quaternary Geochronology, 4, 278–287.

    Article  Google Scholar 

  • Shanahan, T. M., Peck, J. A., McKay, N. P., Heil, C. W., Jr., King, J., Forman, S. L., Hoffmann, D. L., Richards, D. A., Overpeck, J. T., and Scholz, C. A., 2013. Age models for long lacustrine sediment records using multiple dating approaches – An example from Lake Bosumtwi, Ghana. Quaternary Geochronology, 15, 47–60.

    Article  Google Scholar 

  • Smith, S. B., Karlin, R. E., Kent, G. M., Seitz, G. G., and Driscoll, N. W., 2013. Holocene subaqueous paleoseismology of Lake Tahoe. Geological Society of America Bulletin, 125, 691–708.

    Article  Google Scholar 

  • Staff, R. A., Bronk Ramsey, C., Bryant, C. L., Brock, F., Payne, R. L., Schlolaut, G., Marshall, M. H., Brauer, A., Lamb, H. F., Tarasov, P., Yokoyama, Y., Haraguchi, T., Gotanda, K., Yonenobu, H., Nakagawa, T., and Suigetsu 2006 Project Members, 2011. New 14C determinations from Lake Suigetsu, Japan: 12,000 to 0 cal BP. Radiocarbon, 53, 511–528.

    Google Scholar 

  • Stuiver, M., Reimer, P. J., and Reimer, R. W., 2005. CALIB 5.0. [WWW program and documentation]. http://calib.qub.ac.uk/calib/

  • Tennant, R. K., Jones, R. T., Brock, F., Cook, C., Turney, C. S. M., Love, J., and Lee, R., 2013. A new flow cytometry method enabling rapid purification of fossil pollen from terrestrial sediments for AMS radiocarbon dating. Journal of Quaternary Science, doi:10.1002/jqs.2606.

    Google Scholar 

  • Wohlfarth, B., Skog, G., Possnert, G., and Holmquist, B., 1998. Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. Journal of Quaternary Science, 13, 137–145.

    Article  Google Scholar 

  • Zimmerman, S. R. H., Steponaitis, E., Hemming, S. R., and Zermeno, P., 2012. Potential for accurate and precise radiocarbon ages in deglacial-age lacustrine carbonates. Quaternary Geochronology, 13, 81–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Zimmerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Zimmerman, S., Myrbo, A. (2014). Lacustrine Environments (14C). In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_160-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_160-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics