Skip to main content

Corals (Sclerochronology)

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods
  • 384 Accesses

Synonyms

Coral chronometer; Related to dendrochronology

Definition

Sclerochronology: The study of the incremental layers contained in the hard parts or skeletons of organisms that form at regular intervals during the organism’s life span. Sclerochronology is derived from the Greek words sklero meaning “hard,” khronos meaning “time,” and logos meaning “science of.” Sclerochronology is related to dendrochronology or the study of annual growth rings in trees.

Coral: Corals are in the class Anthozoa of the phylum Cnidaria and include scleractinian or “stony corals,” which form colonies of many individual polyps with an external skeleton or exoskeleton of calcium carbonate (CaCO3), and non-stony corals or soft corals. Some stony corals contain incremental layers in their exoskeleton. Coral-based sclerochronological research is focused on stony corals yet recent research reveals that some soft coral species contain incremental layers (see Roark et al. 2006).

Introduction

The general term of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Arnold, B., and Jones, D. S., 2007. Program & abstract book. In Arnold, B., and Jones, D. S. (ed.), 1st International Sclerochronology Conference, Saint Petersburg, p. 118.

    Google Scholar 

  • Barnes, D. J., 1970. Coral skeletons: an explanation of their growth and structure. Science, 170, 1305–1308.

    Article  Google Scholar 

  • Barnes, D. J., and Lough, J. M., 1996. Coral skeletons: storage and recovery of environmental information. Global Change Biology, 2, 569–582.

    Article  Google Scholar 

  • Boto, K., and Isdale, P., 1985. Fluorescent bands in massive corals result from terrestrial fulvic acid inputs to nearshore zone. Nature, 315, 396–397.

    Article  Google Scholar 

  • Brown, D., Basch, L., Barshis, D., Forsman, Z., Fenner, D., and Goldberg, J., 2009. American Samoa’s island of giants: massive Porites colonies at Ta’u island. Coral Reefs, 28, 735.

    Article  Google Scholar 

  • Buddemeier, R. W., 1974. Environmental controls over annual and lunar monthly cycles in hermatypic coral calcification. In Cameron, A. M., Cambell, B. M., Cribb, A. B., Endean, R., Jell, J. S., Jones, O. A., Mather, P., and Talbot, F. H. (eds.), Proceedings of the Second International Coral Reef Symposium. Brisbane: Great Barrier Reef Committee, Vol. 2, pp. 259–267.

    Google Scholar 

  • Buddemeier, R. W., and Kinzie, R. A., 1976. Coral growth. Oceanography and Marine Biology Annual Review, 14, 183–225.

    Google Scholar 

  • Buddemeier, R. W., and Taylor, F. W., 2000. Sclerochronology. In Quaternary Geochronology. Washington, DC: American Geophysical Union, pp. 25–40.

    Google Scholar 

  • Buddemeier, R. W., Maragos, J. E., and Knutson, D. W., 1974. Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. Journal of Experimental Marine Biology and Ecology, 14, 179–199.

    Article  Google Scholar 

  • Buskirk, R. E., Taylor, F. W., O’Brien, W. P., Maillet, P., and Gilpin, L., 1982. Seasonal growth patterns and mortality of corals in the New Hebrides (Vanuatu). In Gomez, E. D., Birkeland, C. E., Buddemeier, R. W., Johannes, R. E., Marsh, J. A., and Tsuda, R. T. (eds.), Proceedings of the 4th International Coral Reef Symposium. Manila: Marine Science Center, University of the Philippines, Vol. 2, pp. 197–200.

    Google Scholar 

  • Chalker, B. E., and Barnes, D. J., 1990. Gamma densitometry for the measurement of skeletal density. Coral Reefs, 9, 11–13.

    Article  Google Scholar 

  • Chalker, B., Barnes, D., and Isdale, P., 1985. Calibration of x-ray densitometry for the measurement of coral skeletal density. Coral Reefs, 4, 95–100.

    Article  Google Scholar 

  • Clark, T. R., Zhao, J.-X., Feng, Y.-X., Done, T. J., Jupiter, S., Lough, J., and Pandolfi, J. M., 2012. Spatial variability of initial 230Th/232Th in modern Porites from the inshore region of the Great Barrier Reef. Geochimica et Cosmochimica Acta, 78, 99–118.

    Article  Google Scholar 

  • Cobb, K. M., Charles, C. D., Cheng, H., and Edwards, R. L., 2003. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424, 271–276.

    Article  Google Scholar 

  • Cobb, K. M., Westphal, N., Sayani, H. R., Watson, J. T., Di Lorenzo, E., Cheng, H., Edwards, R. L., and Charles, C. D., 2013. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science, 339, 67–70.

    Article  Google Scholar 

  • Cole, J. E., 2003. Holocene coral records: windows on tropical climate variability. In McKay, A., Battarbee, R., Birks, J., and Oldfield, F. (eds.), Global Change in the Holocene. London: Arnold, pp. 168–184.

    Google Scholar 

  • Corrège, T., 2006. Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 408–428.

    Article  Google Scholar 

  • Darwin, C., 1842. The structure and distribution of coral reefs smith. London: Elder and Co.

    Google Scholar 

  • DeLong, K. L., Maupin, C. R., Flannery, J. A., Quinn, T. M., Shen, C.–C., and Lin, K., In Revision. A Reconstruction of sea surface temperature variability in the south eastern Gulf of Mexico from 1734–2008 CE using cross-dated Sr/Ca records from the coral Siderastrea siderea, Paleoceanography, 2013PA002524.

    Google Scholar 

  • DeLong, K. L., Quinn, T. M., Taylor, F. W., Lin, K., and Shen, C.–.C., 2012. Sea surface temperature variability in the southwest tropical Pacific since AD 1649. Nature Climate Change, 2, 799–804.

    Article  Google Scholar 

  • DeLong, K. L., Quinn, T. M., Taylor, F. W., Lin, K., and Shen, C.–.C., 2013. Improving coral-base paleoclimate reconstructions by replicating 350 years of coral Sr/Ca variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 6–24.

    Article  Google Scholar 

  • Dodge, R. E., and Thomson, J., 1974. The natural radiochemical and growth records in contemporary hermatypic corals from the Atlantic and Caribbean. Earth and Planetary Science Letters, 23, 313–322.

    Article  Google Scholar 

  • Dodge, R. E., and Vaisnys, J. R., 1975. Hermatypic coral growth banding as environmental recorder. Nature, 258, 706–707.

    Article  Google Scholar 

  • Druffel, E. R., 1980. Radiocarbon in annual coral rings of Belize and Florida. Radiocarbon, 22, 363–371.

    Google Scholar 

  • Druffel, E. R. M., 1997. Geochemistry of corals: proxies of past ocean chemistry, ocean circulation, and climate. Proceedings of the National Academy of Sciences of the United States of America, 94, 8354–8361.

    Article  Google Scholar 

  • Edwards, L. R., Chen, J. H., and Wasserburg, G. J., 1987. 238U–234U–230Th–232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters, 81, 175–192.

    Article  Google Scholar 

  • Emiliani, C., Hudson, J. H., Shinn, E. A., and George, R. Y., 1978. Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep-sea coral from Blake Plateau. Science, 202, 627–629.

    Article  Google Scholar 

  • Fairbanks, R. G., and Dodge, R. E., 1979. Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Montastrea annularis. Geochimica et Cosmochimica Acta, 43, 1009–1020.

    Article  Google Scholar 

  • Felis, T., and Patzold, J., 2004. Climate reconstructions from annually banded corals. In Shiyomi, M. (ed.), Global Environmental Change in the Ocean and on Land. Tokyo: Terrapub, pp. 205–227.

    Google Scholar 

  • Gagan, M. K., Ayliffe, L. K., Beck, J. W., Cole, J. E., Druffel, E. R. M., Dunbar, R. B., and Schrag, D. P., 2000. New views of tropical paleoclimates from corals. Quaternary Science Reviews, 19, 45–64.

    Article  Google Scholar 

  • Goreau, T. J., 1977. Coral skeletal chemistry – physiological and environmental regulation of stable isotopes and trace-metals in Montastrea Annularis. Proceedings of the Royal Society of London Series B-Biological Sciences, 196, 291–315.

    Article  Google Scholar 

  • Grottoli, A., and Eakin, M., 2007. A review of modern coral δ18O and Δ14C proxy records. Earth-Science Reviews, 81, 67–91.

    Article  Google Scholar 

  • Grove, C., Nagtegaal, R., Zinke, J., Scheufen, T., Koster, B., Kasper, S., McCulloch, M., van den Bergh, G., and Brummer, G., 2010. River runoff reconstructions from novel spectral luminescence scanning of massive coral skeletons. Coral Reefs, 29, 579–591.

    Article  Google Scholar 

  • Helmle, K. P., Kohler, K. E., and Dodge, R. E., 2002. Relative optical densitometry and the coral x-radiograph densitometry system: CoralXDS. In Brooks, S., Spencer, T., Teleki, K., and Taylor, M. (eds.), European Meeting of the International Society for Reef Studies (ISRS). Cambridge, UK: University of Cambridge.

    Google Scholar 

  • Hendy, E. J., Gagan, M. K., Alibert, C. A., McCulloch, M. T., Lough, J. M., and Isdale, P. J., 2002. Abrupt decrease in tropical Pacific sea surface salinity at end of Little Ice Age. Science, 295, 1511–1514.

    Article  Google Scholar 

  • Hendy, E. J., Gagan, M. K., and Lough, J. M., 2003. Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeast Australia. The Holocene, 13, 187–199.

    Article  Google Scholar 

  • Hudson, J. H., Shinn, E. A., Halley, R. B., and Lidz, B., 1976. Sclerochronology: a tool for interpreting past environments. Geology, 4, 361–364.

    Article  Google Scholar 

  • Isdale, P. J., Stewart, B. J., Tickle, K. S., and Lough, J. M., 1998. Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia. The Holocene, 8, 1.

    Article  Google Scholar 

  • Knutson, D., Buddemeier, R., and Smith, S., 1972. Coral chronometers: seasonal growth bands in reef corals. Science, 177, 270–272.

    Article  Google Scholar 

  • Lough, J. M., 2008. Coral calcification from skeletal records revisited. Marine Ecology: Progress Series, 373, 257–264.

    Article  Google Scholar 

  • Lough, J. M., 2010. Climate records from corals. Wiley Interdisciplinary Reviews: Climate Change, 1, 318–331.

    Google Scholar 

  • Lough, J., 2011. Measured coral luminescence as a freshwater proxy: comparison with visual indices and a potential age artefact. Coral Reefs, 30, 169–182.

    Article  Google Scholar 

  • Lough, J. M., and Cooper, T. F., 2011. New insights from coral growth band studies in an era of rapid environmental change. Earth-Science Reviews, 108, 170–184.

    Article  Google Scholar 

  • Ma, T.-Y. H., 1934. On the seasonal growth change of growth in the reef coral Favia speciosa (Dana). Proceedings of the Imperial Academy, Tokyo, 10, 353–356.

    Google Scholar 

  • Macintyre, I. G., and Smith, S. V., 1974. X-radiographic studies of skeletal development in coral colonies. In Cameron, A. M., Cambell, B. M., Cribb, A. B., Endean, R., Jell, J. S., Jones, O. A., Mather, P., and Talbot, F. H. (eds.), Proceedings of the Second International Coral Reef Symposium. Brisbane: The Great Barrier Reef Committee, Vol. 2, pp. 277–287.

    Google Scholar 

  • Moore, W. S., and Krishnaswami, S., 1974. Correlation of x-radiographs revealed banding in corals with radiometric growth rates. In Cameron, A. M., Cambell, B. M., Cribb, A. B., Endean, R., Jell, J. S., Jones, O. A., Mather, P., and Talbot, F. H. (eds.), Proceedings of the Second International Coral Reef Symposium. Brisbane: Great Barrier Reef Committee, Vol. 2, pp. 269–276.

    Google Scholar 

  • Nozaki, Y., Rye, D. M., Turekian, K. K., and Dodge, R. E., 1978. A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral. Geophysical Research Letters, 5, 825–828.

    Article  Google Scholar 

  • Nyberg, J., Malmgren, B. A., Winter, A., Jury, M. R., Kilbourne, K. H., and Quinn, T. M., 2007. Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years. Nature, 447, 698–701.

    Article  Google Scholar 

  • Omata, T., Suzuki, A., Kawahata, H., Nojima, S., Minoshima, K., and Hata, A., 2006. Oxygen and carbon stable isotope systematics in Porites coral near its latitudinal limit: the coral response to low-thermal temperature stress. Global and Planetary Change, 53, 137–146.

    Article  Google Scholar 

  • Oomori, T., Kaneshima, K., and Nakamura, Y., 1982. Seasonal variation of minor elements in coral skeletons. Galaxea, 1, 77–86.

    Google Scholar 

  • Roark, E. B., Guilderson, T. P., Dunbar, R. B., and Ingram, B. L., 2006. Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Marine Ecology: Progress Series, 327, 1–14.

    Google Scholar 

  • Schneider, R. C., and Smith, S. V., 1982. Skeletal Sr content and density in Porites spp. in relation to environmental factors. Marine Biology, 66, 121.

    Article  Google Scholar 

  • Schöne, B. R., 2010. Program and abstracts. In Schöne, B. R. (ed.), 2nd International Sclerochronology Conference, Mainz, p. 118.

    Google Scholar 

  • Shen, G. T., 1993. Reconstruction of El Niño history from reef corals. Bulletin de l’Institut Francais d’Etudes Andines, 22, 125–158.

    Google Scholar 

  • Shen, C.–. C., Li, K.-S., Sieh, K., Natawidjaja, D., Cheng, H., Wang, X., Edwards, R. L., Lam, D. D., Hsieh, Y.-T., Fan, T.-Y., Meltzner, A. J., Taylor, F. W., Quinn, T. M., Chiang, H.-W., and Kilbourne, K. H., 2008. Variation of initial 230Th/232Th and limits of high precision U–Th dating of shallow-water corals. Geochimica et Cosmochimica Acta, 72, 4201–4223.

    Article  Google Scholar 

  • Shen, C.–. C., Wu, C.–. C., Cheng, H., Lawrence, E. R., Hsieh, Y.-T., Gallet, S., Chang, C.–. C., Li, T.-Y., Lam, D. D., Kano, A., Hori, M., and Spötl, C., 2012. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta, 99, 71–86.

    Article  Google Scholar 

  • Smithers, S. G., and Woodroffe, C. D., 2000. Microatolls as sea-level indicators on a mid-ocean atoll. Marine Geology, 168, 61–78.

    Article  Google Scholar 

  • Smithers, S. G., and Woodroffe, C. D., 2001. Coral microatolls and 20th century sea level in the eastern Indian Ocean. Earth and Planetary Science Letters, 191, 173–184.

    Article  Google Scholar 

  • Swart, P. K., 1983. Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-Science Reviews, 19, 51–80.

    Article  Google Scholar 

  • Taylor, F. W., Jouannic, C., Gilpin, L., and Bloom, A. L., 1982. Coral colonies as monitors of change in relative level of the land and sea: applications to vertical tectonism. In Gomez, E. D., Birkeland, C. E., Buddemeier, R. W., Johannes, R. E., Marsh, J. A., and Tsuda, R. T. (eds.), Proceedings of the 4th International Coral Reef Symposium. Manila: Marine Science Center, University of the Philippines, Vol. 1, pp. 484–492.

    Google Scholar 

  • Taylor, F. W., Frohlich, C., Lecolle, J., and Strecker, M., 1987. Analysis of partially emerged corals and reef terraces in the central Vanuatu Arc: comparison of contemporary coseismic and nonseismic with quaternary vertical movements. Journal of Geophysical Research: Solid Earth, 92, 4905–4933.

    Article  Google Scholar 

  • Tudhope, A. W., Lea, D. W., Shimmield, G. B., Chilcott, C. P., and Head, S., 1996. Monsoon climate and Arabian sea coastal upwelling recorded in massive corals from southern Oman. Palaios, 11, 347–361.

    Article  Google Scholar 

  • Vaughan, T. W., 1915. The geologic significance of the growth-rate of the Floridian and Bahaman shoal-water corals. Journal of the Washington Academy of Sciences, 5, 591–600.

    Google Scholar 

  • Veron, J. E. N., 1986. Corals of Australia and the Indo-Pacific. Australia: North Ryde NSW, University of Hawaii Press.

    Google Scholar 

  • Weber, J. N., and Woodhead, P. M., 1972. Temperature dependence of oxygen-18 concentration in reef coral carbonates. Journal of Geophysical Research, 77, 463–473.

    Article  Google Scholar 

  • Weber, J. N., White, E. W., and Weber, P. H., 1975. Correlation of density banding in reef coral skeletons with environmental parameters: the basis for interpretation of chronological records preserved in the corolla of corals. Paleobiology, 1, 137–149.

    Google Scholar 

  • Wells, J. W., 1963. Coral growth and geochronometry. Nature, 197, 948–950.

    Article  Google Scholar 

  • Whitfield, R. P., 1898. Notice of a remarkable specimen of the West India coral Madrepora palmata. Bulletin of the American Museum of Natural History, 10(19), 463–464.

    Google Scholar 

  • Woodroffe, C. D., McGregor, H. V., Lambeck, K., Smithers, S. G., and Fink, D., 2012. Mid-Pacific microatolls record sea-level stability over the past 5000 year. Geology, 40, 951–954.

    Article  Google Scholar 

  • Yu, K.-F., Zhao, J.-X., Done, T., and Chen, T.-G., 2009. Microatoll record for large century-scale sea-level fluctuations in the mid-Holocene. Quaternary Research, 71, 354–360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine L. DeLong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

DeLong, K.L. (2013). Corals (Sclerochronology). In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_154-3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_154-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics