Skip to main content

Radiocarbon Dating of Marine Carbonates

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Definition

Contaminant: Carbon-containing materials that do not originally belong to the sample.

Pretreatment: A process applying physical and chemical treatments to remove contaminants.

Contamination and Sample Pretreatment

Marine carbonates such as shells and corals mainly consist of aragonite. Before samples are processed for radiocarbon dating, all contaminants must be removed; otherwise the determination of correct radiocarbon ages may not be achieved. Contaminants are derived from the surrounding environment if samples were buried in soils or sediments (e.g., secondary carbonates derived from groundwater and recrystallization of sample carbonate due to chemical exchange between the sample and the surrounding environment). These carbonate contaminants are mostly in the form of calcite. Contaminants can also be conservation materials in the case of museum specimens. Contamination cannot always be seen by naked eye. In such cases, samples should be screened for secondary carbonates...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Andrews, A. H., Kalish, J. M., Newman, S. J., and Johnston, J. M., 2011. Bomb radiocarbon dating of three important reef-fish species using Indo-Pacific Δ14C chronologies. Marine and Freshwater Research, 62, 1259–1269.

    Article  Google Scholar 

  • Bondevik, S., Mangerud, J., Birks, H. H., Gulliksen, S., and Reimer, P., 2006. Changes in North Atlantic radiocarbon reservoir ages during the Allerød and Younger Dryas. Science, 312, 1514–1517.

    Article  Google Scholar 

  • Dawson, J. L., Smithers, S. G., and Hua, Q., 2013. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef. Geomorphology, in press.

    Google Scholar 

  • Douka, K., Hedges, R. E. M., and Higham, T. F. G., 2010. Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction and a novel density separation protocol (CarDS). Radiocarbon, 52(2–3), 735–751.

    Google Scholar 

  • Ewing, G. P., Lyle, J. M., Murphy, R. J., Kalish, J. M., and Ziegler, P. E., 2007. Validation of age and growth in a long-lived temperate reef fish using otolith structure, oxytetracycline and bomb radiocarbon methods. Marine and Freshwater Research, 58, 944–955.

    Article  Google Scholar 

  • Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., and Zimmerman, S. R. H., 2013. SHCAL13 Southern Hemisphere calibration, 0–50,000 cal yr BP. Radiocarbon, 55(4), 1889–1903.

    Google Scholar 

  • Hua, Q., 2009. Radiocarbon: a chronological tool for the recent past. Quaternary Geochronology, 4, 378–390.

    Article  Google Scholar 

  • Hua, Q., Barbetti, M., and Rakowski, A. Z., 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon, 55(4), 2059–2072.

    Google Scholar 

  • Kalish, J. M., 1993. Pre- and post-bomb radiocarbon in fish otoliths. Earth and Planetary Science Letters, 114, 549–554.

    Article  Google Scholar 

  • McGregor, H. V., and Gagan, M. K., 2003. Diagenesis and geochemistry of Porites corals from Papua New Guinea: implications for paleoclimate reconstruction. Geochimica et Cosmochimica Acta, 67, 2147–2156.

    Article  Google Scholar 

  • Nothdurft, L. D., and Webb, G. E., 2009. Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives. Facies, 55, 161–201.

    Article  Google Scholar 

  • Ortlieb, L., Vargas, G., and Saliège, J.-F., 2011. Marine radiocarbon reservoir effect along the northern Chile-southern Peru coast (14–24°S) throughout the Holocene. Quaternary Research, 75, 91–103.

    Article  Google Scholar 

  • Petchey, F., 2009. Dating marine shell in Oceania: issues and prospects. In Fairbairn, A., O’Connor, S., and Marwick, B. (eds.), Terra Australis 28: New Directions in Archaeological Science. Canberra: ANU E Press, pp. 157–172.

    Google Scholar 

  • Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffman, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), 1869–1887.

    Google Scholar 

  • Russo, C. M., Tripp, J. A., Douka, K., and Higham, T. F. G., 2010. A new radiocarbon pretreatment for molluscan shell using density fractionation of carbonates in bromoform. Radiocarbon, 52(2–3), 1301–1311.

    Google Scholar 

  • Siani, G., Paterne, M., Michel, E., Sulpizio, R., Sbrana, A., Arnold, M., and Haddad, G., 2001. Mediterranean sea surface radiocarbon reservoir age changes since the Last Glacial Maximum. Science, 294, 1917–1920.

    Article  Google Scholar 

  • Sloss, C. R., Westaway, K. E., Hua, Q., and Murray-Wallace, C. V., 2013. An introduction to dating techniques: a guide for geomorphologists. In Shroder, J., Switzer, A. D., and Kennedy, D. M. (eds.), Treatise on Geomorphology. San Diego: Academic. Methods in Geomorphology, Vol. 14, pp. 346–369.

    Chapter  Google Scholar 

  • Ulm, S., 2002. Marine and estuarine reservoir effects in central Queensland, Australia: determination of ΔR values. Geoarchaeology, 17(4), 319–348.

    Article  Google Scholar 

  • Walker, M., 2005. Quaternary Dating Methods. Chichester: Wiley.

    Google Scholar 

  • Webb, G. E., Price, G. J., Nothdurft, L. D., Deer, L., and Rintoul, L., 2007. Cryptic meteoric diagenesis in fresh water bivalves: implications for radiocarbon dating. Geology, 35, 803–806.

    Article  Google Scholar 

  • Woodroffe, C. D., Samosorn, B., Hua, Q., and Hart, D. E., 2007. Incremental accretion of a sandy reef island over the past 3000 years indicated by component-specific radiocarbon dating. Geophysical Research Letters, 34, L03602, doi: 10.1029/2006GL028875.

    Article  Google Scholar 

  • Yu, K., Hua, Q., Zhao, J., Hodge, E., Fink, D., and Barbetti, M., 2010. Holocene marine 14C reservoir age variability: evidence from 230Th-dated corals from South China Sea. Paleoceanography, 25, PA3205, doi: 10.1029/2009PA001831.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Hua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Hua, Q. (2013). Radiocarbon Dating of Marine Carbonates. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_151-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_151-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics