Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Radiocarbon Dating of Marine Carbonates

  • Quan Hua
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_151-1


Contaminant: Carbon-containing materials that do not originally belong to the sample.

Pretreatment: A process applying physical and chemical treatments to remove contaminants.

Contamination and Sample Pretreatment

Marine carbonates such as shells and corals mainly consist of aragonite. Before samples are processed for radiocarbon dating, all contaminants must be removed; otherwise the determination of correct radiocarbon ages may not be achieved. Contaminants are derived from the surrounding environment if samples were buried in soils or sediments (e.g., secondary carbonates derived from groundwater and recrystallization of sample carbonate due to chemical exchange between the sample and the surrounding environment). These carbonate contaminants are mostly in the form of calcite. Contaminants can also be conservation materials in the case of museum specimens. Contamination cannot always be seen by naked eye. In such cases, samples should be screened for secondary carbonates...


Dissolve Inorganic Carbon Surface Ocean Reef Flat Accelerator Mass Spectrometry Marine Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Andrews, A. H., Kalish, J. M., Newman, S. J., and Johnston, J. M., 2011. Bomb radiocarbon dating of three important reef-fish species using Indo-Pacific Δ14C chronologies. Marine and Freshwater Research, 62, 1259–1269.CrossRefGoogle Scholar
  2. Bondevik, S., Mangerud, J., Birks, H. H., Gulliksen, S., and Reimer, P., 2006. Changes in North Atlantic radiocarbon reservoir ages during the Allerød and Younger Dryas. Science, 312, 1514–1517.CrossRefGoogle Scholar
  3. Dawson, J. L., Smithers, S. G., and Hua, Q., 2013. The importance of large benthic foraminifera to reef island sediment budget and dynamics at Raine Island, northern Great Barrier Reef. Geomorphology, in press.Google Scholar
  4. Douka, K., Hedges, R. E. M., and Higham, T. F. G., 2010. Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction and a novel density separation protocol (CarDS). Radiocarbon, 52(2–3), 735–751.Google Scholar
  5. Ewing, G. P., Lyle, J. M., Murphy, R. J., Kalish, J. M., and Ziegler, P. E., 2007. Validation of age and growth in a long-lived temperate reef fish using otolith structure, oxytetracycline and bomb radiocarbon methods. Marine and Freshwater Research, 58, 944–955.CrossRefGoogle Scholar
  6. Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., and Zimmerman, S. R. H., 2013. SHCAL13 Southern Hemisphere calibration, 0–50,000 cal yr BP. Radiocarbon, 55(4), 1889–1903.Google Scholar
  7. Hua, Q., 2009. Radiocarbon: a chronological tool for the recent past. Quaternary Geochronology, 4, 378–390.CrossRefGoogle Scholar
  8. Hua, Q., Barbetti, M., and Rakowski, A. Z., 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon, 55(4), 2059–2072.Google Scholar
  9. Kalish, J. M., 1993. Pre- and post-bomb radiocarbon in fish otoliths. Earth and Planetary Science Letters, 114, 549–554.CrossRefGoogle Scholar
  10. McGregor, H. V., and Gagan, M. K., 2003. Diagenesis and geochemistry of Porites corals from Papua New Guinea: implications for paleoclimate reconstruction. Geochimica et Cosmochimica Acta, 67, 2147–2156.CrossRefGoogle Scholar
  11. Nothdurft, L. D., and Webb, G. E., 2009. Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives. Facies, 55, 161–201.CrossRefGoogle Scholar
  12. Ortlieb, L., Vargas, G., and Saliège, J.-F., 2011. Marine radiocarbon reservoir effect along the northern Chile-southern Peru coast (14–24°S) throughout the Holocene. Quaternary Research, 75, 91–103.CrossRefGoogle Scholar
  13. Petchey, F., 2009. Dating marine shell in Oceania: issues and prospects. In Fairbairn, A., O’Connor, S., and Marwick, B. (eds.), Terra Australis 28: New Directions in Archaeological Science. Canberra: ANU E Press, pp. 157–172.Google Scholar
  14. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffman, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, M., Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), 1869–1887.Google Scholar
  15. Russo, C. M., Tripp, J. A., Douka, K., and Higham, T. F. G., 2010. A new radiocarbon pretreatment for molluscan shell using density fractionation of carbonates in bromoform. Radiocarbon, 52(2–3), 1301–1311.Google Scholar
  16. Siani, G., Paterne, M., Michel, E., Sulpizio, R., Sbrana, A., Arnold, M., and Haddad, G., 2001. Mediterranean sea surface radiocarbon reservoir age changes since the Last Glacial Maximum. Science, 294, 1917–1920.CrossRefGoogle Scholar
  17. Sloss, C. R., Westaway, K. E., Hua, Q., and Murray-Wallace, C. V., 2013. An introduction to dating techniques: a guide for geomorphologists. In Shroder, J., Switzer, A. D., and Kennedy, D. M. (eds.), Treatise on Geomorphology. San Diego: Academic. Methods in Geomorphology, Vol. 14, pp. 346–369.CrossRefGoogle Scholar
  18. Ulm, S., 2002. Marine and estuarine reservoir effects in central Queensland, Australia: determination of ΔR values. Geoarchaeology, 17(4), 319–348.CrossRefGoogle Scholar
  19. Walker, M., 2005. Quaternary Dating Methods. Chichester: Wiley.Google Scholar
  20. Webb, G. E., Price, G. J., Nothdurft, L. D., Deer, L., and Rintoul, L., 2007. Cryptic meteoric diagenesis in fresh water bivalves: implications for radiocarbon dating. Geology, 35, 803–806.CrossRefGoogle Scholar
  21. Woodroffe, C. D., Samosorn, B., Hua, Q., and Hart, D. E., 2007. Incremental accretion of a sandy reef island over the past 3000 years indicated by component-specific radiocarbon dating. Geophysical Research Letters, 34, L03602, doi: 10.1029/2006GL028875.CrossRefGoogle Scholar
  22. Yu, K., Hua, Q., Zhao, J., Hodge, E., Fink, D., and Barbetti, M., 2010. Holocene marine 14C reservoir age variability: evidence from 230Th-dated corals from South China Sea. Paleoceanography, 25, PA3205, doi: 10.1029/2009PA001831.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Australian Nuclear Science and Technology OrganisationKirrawee DCAustralia