Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Marine Isotope Stratigraphy

  • Galen P. Halverson
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_130-1


Marine isotope stratigraphy is the application of proxies of seawater isotopic composition, as preserved in marine sediments and sedimentary rocks, for correlation and dating purposes.


Chemical stratigraphy, or chemostratigraphy, is the application of chemical signatures preserved in sediments and sedimentary rocks for the purpose of correlation, dating, or interpreting past environments and environmental change (Weissert et al. 2008; Halverson et al. 2010). Marine isotope stratigraphy is the most important subdivision of chemostratigraphy and encapsulates diverse stable and radiogenic isotope systems that have been applied to studies of marine strata spanning from Archean to Recent in age. The list of isotope systems that have been investigated is large and growing, spurred in part by significant recent developments in gas source (IRMS) and multi-collector inductively coupled plasma (MC-ICP-MS) mass spectrometry (see also entry on Mass Spectrometry). However,...


Oxygen Isotope Dissolve Inorganic Carbon Sulfur Isotope Benthic Foraminifera Isotope System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Banner, J. L., 2004. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth-Science Reviews, 65, 141–194.CrossRefGoogle Scholar
  2. Berger, W. H., Killingley, J. S., and Vincent, E., 1978. Stable isotopes in deep-sea carbonates: box core ERDC-92, west equatorial Pacific. Oceanologica Acta, 1, 203–216.Google Scholar
  3. Burke, W. M., Denison, R. E., Hetherington, E. A., Koepnik, R. B., Nelson, M., and Omo, J., 1982. Variations of seawater 87Sr/86Sr throughout Phanerozoic shales. Geology, 10, 516–519.CrossRefGoogle Scholar
  4. Canfield, D. E., 1998. A new model for Proterozoic ocean chemistry. Nature, 396, 450–453.CrossRefGoogle Scholar
  5. Cohen, A. S., and Coe, A. L., 2002. New geochemical evidence for the onset of volcanism in the Central Atlantic Magmatic Province and environmental change at the Triassic-Jurassic boundary. Geology, 30, 267–270.CrossRefGoogle Scholar
  6. Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., and Miller, K. G., 2009. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24, doi:10.1029/2008PA001683.
  7. DePaolo, D. J., and Ingram, B. L., 1985. High-resolution stratigraphy with strontium isotopes. Science, 227, 938–941.CrossRefGoogle Scholar
  8. DePaolo, D. J., and Wasserburg, G. J., 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3, 249–252.CrossRefGoogle Scholar
  9. Derry, L. A., 2010. A burial diagenesis origin for the Ediacaran-Shuram Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294, 152–162.CrossRefGoogle Scholar
  10. Emiliani, C., 1955. Pleistocene temperatures. The Journal of Geology, 63, 538–578.CrossRefGoogle Scholar
  11. Emiliani, C., 1958. Paleotemperature analysis of Core 280 and Pleistocene glaciations. The Journal of Geology, 66, 264–275.CrossRefGoogle Scholar
  12. Epstein, S., Buchsbaum, R., Lowenstam, H., and Urey, H. C., 1951. Carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 62, 417–426.CrossRefGoogle Scholar
  13. Epstein, S., and Mayeda, T., 1953. Variation in O18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4, 213–224.CrossRefGoogle Scholar
  14. Gradstein, F. M., Ogg, J. G., and Smith, A. G. (eds.), 2004. A Geologic Time Scale 2004. Cambridge, UK: Cambridge University Press, Vol. 86.Google Scholar
  15. Grossman, E. L., 2012. Oxygen isotope stratigraphy. In: Gradstein, F. M., Ogg, J. O., Schmitz, M., and Ogg, G. (eds.), The Geological Time Scale 2012. Amsterdam: Elsevier, pp. 181–206.Google Scholar
  16. Halverson, G. P., Wade, B. P., Hurtgen, M. T., and Barovich, K. M., 2010. Neoproterozoic chemostratigraphy. Precambrian Research, 182, 337–350.CrossRefGoogle Scholar
  17. Hayes, J. M., Strauss, H., and Kaufman, A. J., 1999. The abundance of 13C in marine organic carbonate and isotopic fractionation in the global biogeochemical cycle of carbon in the past 800 Ma. Chemical Geology, 161, 103–125.CrossRefGoogle Scholar
  18. Hays, J. D., Imbrie, J., and Shackleton, N. J., 1976. Variations in Earth’s orbit: pacemaker of the ice ages. Science, 194, 1121–1131.CrossRefGoogle Scholar
  19. Higgins, J. A., and Schrag, D. P., 2006. Beyond methane: towards a theory for the Paleocene-Eocene thermal maximum. Earth and Planetary Science Letters, 245, 523–537.CrossRefGoogle Scholar
  20. Holmden, C., Creaser, R. A., Muehlenbachs, K., Leslie, S. A., and Bergstrom, S. M., 1998. Isotopic evidence for geochemical decoupling between ancient epeiric seas and bordering oceans: implications for secular curves. Geology, 26, 567–570.CrossRefGoogle Scholar
  21. Kampschulte, A., and Strauss, H., 2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology, 204, 255–286.CrossRefGoogle Scholar
  22. Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K., and Lambert, I. B., 1986. Secular variations in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Green- land. Nature, 321, 832–838.CrossRefGoogle Scholar
  23. Kump, L. R., and Arthur, M. A., 1999. Interpreting carbon-isotope excursions: carbonates and organic carbon. Chemical Geology, 161, 181–198.CrossRefGoogle Scholar
  24. Lisiecki, L. E., and Raymo, M. E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O. Paleoceanography, 20, PA1003, doi:10.1029/2004PA001071.Google Scholar
  25. McArthur, J., Howarth, R. J., Shields, G. A., 2012. Strontium isotope stratigraphy. The Geological Time Scale. Amsterdam: Elsevier, Chap. 7, pp. 127–144.Google Scholar
  26. Milliman, J. D., 1993. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochemical Cycles, 7, 927–957.CrossRefGoogle Scholar
  27. Misra, S., and Froelich, P. N., 2012. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science, 335, 818–823.CrossRefGoogle Scholar
  28. Panchuk, K. M., Holmden, C., and Kump, L. R., 2005. Sensitivity of the epeiric sea carbon isotope record to local-scale carbon cycle processes: tales from the Mohawkian sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 320–337.CrossRefGoogle Scholar
  29. Paquay, F. S., Ravizza, G. E., Dalai, T. K., and Peucker-Ehrenbrink, B., 2008. Determining chondritic impactor size from the marine osmium isotope record. Science, 320, 214–218.CrossRefGoogle Scholar
  30. Paytan, A., and Gray, E. T., 2012. Sulfur isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. (eds.), The Geological Time Scale 2012. Amsterdam: Elsevier, pp. 167–180.CrossRefGoogle Scholar
  31. Paytan, A., Martínez-Ruiz, F., Eagle, M., Ivy, A., and Wankel, S. D., 2004. Using sulfur isotopes in barite to elucidate the origin of high organic matter accumulation events in marine sediments. Sulfur Biogeochemistry, GSA Special Paper 379, pp. 151–160.Google Scholar
  32. Peucker-Ehrenbrink, B., and Ravizza, G., 2000. The marine isotope record. Terra Nova, 12, 205–219.CrossRefGoogle Scholar
  33. Peucker-Ehrenbrink, B., and Ravizza, G., 2012. Osmium isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. (eds.), The Geological Time Scale 2012. Amsterdam: Elsevier, pp. 145–166.CrossRefGoogle Scholar
  34. Popp, B. N., Laws, E. A., Bidigare, R. R., Dore, J. E., Hanson, K. L., and Wakeham, S. G., 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta, 62, 69–77.CrossRefGoogle Scholar
  35. Ravizza, G., and Peuker-Ehrenbrink, B., 2003. Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record. Science, 302, 1392–1395.CrossRefGoogle Scholar
  36. Ravizza, G. E., Norris, R. N., Blusztajn, J., and Aubry, M.-P., 2001. An osmium isotope excursion associated with the late Paleocene thermal maximum: evidence of intensified chemical weathering. Paleoceanography, 16, 155–163.CrossRefGoogle Scholar
  37. Rees, C. E., Jenkins, W. F., and Monster, J., 1978. The sulphur isotopic composition of ocean water sulphate. Geochimica et Cosmochimica Acta, 42, 377–382.CrossRefGoogle Scholar
  38. Saltzman, M. R., and Thomas, E., 2012. Carbon isotope stratigraphy. In Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. (eds.), The Geological Time Scale 2012. Amsterdam: Elsevier, pp. 207–232.CrossRefGoogle Scholar
  39. Schmitz, B., Peucker-Ehrenbrink, B., Heilmann-Clausen, C., Åberg, G., Asaro, F., and Lee, C.-T. A., 2004. Basaltic explosive volcanism, but no comet impact, at the Paleocene–Eocene boundary: high-resolution chemical and isotopic records from Egypt, Spain and Denmark. Earth and Planetary Science Letters, 225, 1–17.CrossRefGoogle Scholar
  40. Scholle, P. A., and Arthur, M. A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestone: potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists Bulletin, 64, 67–87.Google Scholar
  41. Schrag, D. P., Hampt, G., and Murray, D. W., 1996. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science, 272, 1930–1932.CrossRefGoogle Scholar
  42. Shackleton, N. J., 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 289, 1897–1902.CrossRefGoogle Scholar
  43. Shackleton, N. J., and Opdyke, N. D., 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 Year and 106 year scale. Quaternary Research, 3, 39–55.CrossRefGoogle Scholar
  44. Shields, G., and Veizer, J., 2002. Precambrian marine carbonate isotope database: Version 1.1. Geochemistry Geophysics Geosystems, 3. doi:10.1029/2001GC000266.Google Scholar
  45. Swart, P. K., 2008. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle. Proceedings of the National Academy of Sciences United States of America, 105, 13741–13745.CrossRefGoogle Scholar
  46. Tachikawa, K., Jeandel, C., and Roy-Barman, M., 1999. A new approach to the Nd residence time in the ocean: the role of atmospheric inputs. Earth and Planetary Science Letters, 170, 433–446.CrossRefGoogle Scholar
  47. Turgeon, S. C., and Creaser, R. A., 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature, 454, 323–326.CrossRefGoogle Scholar
  48. Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Geological Society of America Bulletin, 62, 399–416.CrossRefGoogle Scholar
  49. Weissert, H., Joachimski, M., and Sarntheiin, M., 2008. Chemostratigraphy. Newsletters on Stratigraphy, 42, 145–179.CrossRefGoogle Scholar
  50. Wickman, F. E., 1948. Isotope ratios: a clue to the age of certain marine sediments. Journal of Geology, 56, 61–66.CrossRefGoogle Scholar
  51. Wortmann, E. G. and Paytan, A., 2012. Rapid variability of seawater chemistry over the past 130 million years. Science 337, 334–336.CrossRefGoogle Scholar
  52. Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.CrossRefGoogle Scholar
  53. Zachos, J. C., Bohaty, S. M., John, C. M., McCarren, H., Kelly, D. C., and Nielsen, T., 2007. The Palaeocene-Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records. Philosophical Transactions of the Royal Society A, 365, 1829–1842.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Earth and Planetary Sciences/GeotopMcGill UniversityMontréalCanada