Skip to main content

Luminescence Dating

  • Living reference work entry
  • First Online:
  • 458 Accesses

Definition

Luminescence – emission of light from a semiconductor or insulator in response to some form of stimulation such as heat or light. In the context of using luminescence for dating, the luminescence signal arises from the release of energy stored from prior exposure to ionizing radiation such as alpha, beta, or gamma radiation. Thus, luminescence provides a mechanism for measuring the amount of ionizing radiation a sample has been exposed to.

Thermoluminescence (TL):

Emission of luminescence in response to heating of the sample.

Optically Stimulated Luminescence (OSL):

Emission of luminescence in response to exposing the sample to light. In the laboratory this light is normally restricted to a narrow range of wavelengths.

Introduction

Radioactivity is ubiquitous in the natural environment. Luminescence dating exploits the presence of radioactive isotopes of elements such as uranium (U), thorium (Th), and potassium (K). Naturally occurring minerals such as quartz and feldspars...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Aitken, M. J., 1985. Thermoluminescence Dating. London: Academic.

    Google Scholar 

  • Bailiff, I. K., Lacey, H. R., Coningham, R. A. E., Gunawardhana, P., Adikari, G., Davis, C. E., Manuel, M. J., and Strickland, K. M., 2013. Luminescence dating of brick stupas: an application to the hinterland of Anuradhapura, Sri Lanka. Antiquity, 87(335), 189–201.

    Article  Google Scholar 

  • Ballarini, M., Wallinga, J., Murray, A.S., van Heteren, S., Oost, A.P., Bos, A. J. J., and van Eijk, C. W. E., 2003. Optical dating of young coastal dunes on a decadal time scale. Quaternary Science Reviews 22, 1011–1017.

    Google Scholar 

  • Barnett, S. M., 2000. Luminescence dating of pottery from later prehistoric Britain. Archaeometry, 42, 431–457.

    Article  Google Scholar 

  • Bristow, C. S., Duller, G. A. T., and Lancaster, N., 2007. Age and dynamics of linear dunes in the Namib Desert. Geology, 35, 555–558.

    Article  Google Scholar 

  • Duller, G. A. T., 1991. Equivalent dose determination using single aliquots. Nuclear Tracks and Radiation Measurements, 18, 371–378.

    Article  Google Scholar 

  • Duller, G. A. T., 1995. Luminescence dating using single aliquots: methods and applications. Radiation Measurements, 24, 217–226.

    Article  Google Scholar 

  • Duller, G. A. T., 2006. Single grain optical dating of glacigenic sediments. Quaternary Geochronology, 1, 296–304.

    Article  Google Scholar 

  • Duller, G. A. T., 2008a. Single grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas, 37, 589–612.

    Article  Google Scholar 

  • Duller, G. A. T., 2008b. Luminescence Dating: Guidelines on Using Luminescence Dating in Archaeology. Swindon: English Heritage.

    Google Scholar 

  • Galbraith, R. F., and Roberts, R. G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology, 11, 1–27.

    Article  Google Scholar 

  • Guralnik, B., Jain, M., Herman, F., Paris, R. B., Harrison, T. M., Murray, A. S., Valla, P. G., and Rhodes, E. J., 2013. Effective closure temperature in leaky and/or saturating thermochronometers. Earth and Planetary Science Letters, 384, 209–218.

    Article  Google Scholar 

  • Heimsath, A. M., Chappell, J., Spooner, N. A., and Questiaux, D. G., 2002. Creeping soil. Geology, 30, 111–114.

    Article  Google Scholar 

  • Herman, F., Rhodes, E. J., Braun, J., and Heiniger, L., 2010. Uniform erosion rates and relief amplitude during glacial cycles in the Southern Alps of New Zealand, as revealed from OSL-thermochronology. Earth and Planetary Science Letters, 297(1–2), 183–189.

    Article  Google Scholar 

  • Huntley, D. J., Godfrey-Smith, D. I., and Thewalt, M. L. W., 1985. Optical dating of sediments. Nature, 313, 105–107.

    Article  Google Scholar 

  • Jacobs, Z., and Roberts, R. G., 2007. Advances in optically stimulated luminescence (OSL) dating of individual grains of quartz from archaeological deposits. Evolutionary Anthropology, 16, 210–223.

    Article  Google Scholar 

  • Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grun, R., Mackay, A. W., Mitchell, P., Vogelsang, R., and Wadley, L., 2008. Ages for the middle stone age of Southern Africa: implications for human behavior and dispersal. Science, 322, 733–735.

    Article  Google Scholar 

  • Madsen, A. T., and Murray, A.S., 2009. Optically stimulated luminescence dating of young sediments: A review. Geomorphology 109(1–2), 3–16.

    Google Scholar 

  • Madsen, A. T., Murray, A. S., Andersen, T. J., and Pejrup, M., 2010. Luminescence dating of Holocene sedimentary deposits on Rømø, a barrier island in the Wadden Sea, Denmark. Holocene, 20(8), 1247–1256.

    Article  Google Scholar 

  • Murray, A. S., and Roberts, R. G., 1998. Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol. Radiation Measurements, 29, 503–515.

    Article  Google Scholar 

  • Murray, A. S., and Wintle, A. G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, 32(1), 57–73.

    Article  Google Scholar 

  • Murray, A. S., Roberts, R. G., and Wintle, A. G., 1997. Equivalent dose measurement using a single aliquot of quartz. Radiation Measurements, 27, 171–184.

    Article  Google Scholar 

  • Olley, J., Murray, A., and Roberts, R. G., 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Geochronology (QSR), 15, 751–760.

    Google Scholar 

  • Prescott, J. R., and Hutton, J. T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements, 23, 497–500.

    Article  Google Scholar 

  • Rhodes, E. J., 2011. Optically stimulated luminescence dating of sediments over the past 200,000 years. Annual Review of Earth and Planetary Sciences, 39, 461–488. R. Jeanloz and K. H. Freeman.

    Article  Google Scholar 

  • Richter, D., 2007. Advantages and limitations of thermoluminescence dating of heated flint from paleolithic sites. Geoarchaeology, 22(6), 671–683.

    Article  Google Scholar 

  • Richter, D., Moser, J., Nami, M., Eiwanger, J., and Mikdad, A., 2010. New chronometric data from Ifri n’Ammar (Morocco) and the chronostratigraphy of the Middle Palaeolithic in the Western Maghreb. Journal of Human Evolution, 59(6), 672–679.

    Article  Google Scholar 

  • Rink, W. J., Dunbar, J. S., Tschinkel, W. R., Kwapich, C., Repp, A., Stanton, W., and Thulman, D. K., 2013. Subterranean transport and deposition of quartz by ants in sandy sites relevant to age overestimation in optical luminescence dating. Journal of Archaeological Science, 40(4), 2217–2226.

    Article  Google Scholar 

  • Roberts, H. M., and Plater, A. J., 2007. Reconstruction of Holocene foreland progradation using optically stimulated luminescence (OSL) dating: an example from Dungeness, UK. The Holocene, 17, 495–505.

    Google Scholar 

  • Rustomji, P., and Pietsch, T., 2007. Alluvial sedimentation rates from southeastern Australia indicate post-European settlement landscape recovery. Geomorphology, 90(1–2), 73–90.

    Article  Google Scholar 

  • Sohbati, R., Murray, A. S., Chapot, M. S., Jain, M., and Pederson, J., 2012. Optically stimulated luminescence (OSL) as a chronometer for surface exposure dating. Journal of Geophysical Research, 117, B09202.

    Article  Google Scholar 

  • Stokes, S., Colls, A. E. L., Fattahi, M., and Rich, J., 2000. Investigations of the performance of quartz single aliquot D-E determination procedures. Radiation Measurements, 32(5–6), 585–594.

    Article  Google Scholar 

  • Tribolo, C., Mercier, N., Selo, M., Valladas, H., Joron, J. L., Reyss, J. L., Henshilwood, C. S., Sealy, J. C., and Yates, R., 2006. TL dating of burnt lithics from Blombos Cave (South Africa): further evidence for the antiquity of modern human behaviour. Archaeometry, 48, 341–357.

    Article  Google Scholar 

  • Wallinga, J., Murray, A. S., and Wintle, A. G., 2000. The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiation Measurements, 32, 529–533.

    Article  Google Scholar 

  • Wintle, A. G., 1997. Luminescence dating: laboratory procedures and protocols. Radiation Measurements, 27, 769–817.

    Article  Google Scholar 

  • Wintle, A. G., 2008. Fifty years of luminescence dating. Archaeometry, 50(2), 276–312.

    Article  Google Scholar 

  • Wintle, A. G., and Murray, A. S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, 41, 369–391.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. T. Duller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Duller, G.A.T. (2014). Luminescence Dating. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_125-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_125-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics