Skip to main content

Rb–Sr Dating

  • Living reference work entry
  • First Online:

Synonyms

Rb–Sr geochronology

Definition

Parentdaughter ratio: The ratio of rubidium (Rb) to strontium (Sr). The ratio is commonly expressed as 87Rb/86Sr, where the unstable Rb-87 isotope is referred to as the parent nuclide, being approximately 27 % of all rubidium. The daughter nuclide (Sr-87) is represented by Sr-86, which is stable and not subject to radiogenic ingrowth and constitutes approximately 9.9 % of all strontium.

Nicolaysen diagram: A diagram of Rb-87 (abscissa) versus Sr-87 (ordinate), both normalized to Sr-86 (expressed as 87Rb/86Sr and 87Sr/86Sr) illustrating the effect of age on the radiogenic decay of Rb-87 to Sr-87.

Initial isotope equilibrium: The assumption that at the time of formation of a rock, all phases therein share the same Sr isotope composition; a prerequisite for an isochron.

Isochron: A best-fit line of three or more phases in a Nicolaysen diagram with its slope corresponding to an age of phases that are in initial isotope equilibrium. Two-point...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Allègre, C. J., Birck, J. L., Fourcade, S., and Semet, M. P., 1975. Rubidium-87/Strontium-87 age of juvinas basaltic achondrite and early igneous activity in solar-system. Science, 187(4175), 436–438.

    Article  Google Scholar 

  • Amelin, Y., and Zaitsev, A. N., 2002. Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations. Geochimica et Cosmochimica Acta, 66(13), 2399–2419.

    Article  Google Scholar 

  • Anand, M., et al., 2006. Petrology and geochemistry of LaPaz Icefield 02205: a new unique low-Ti mare-basalt meteorite. Geochimica et Cosmochimica Acta, 70(1), 246–264.

    Article  Google Scholar 

  • Armstrong, R. L., Jäger, E., and Eberhardt, P., 1966. A comparison of K-Ar and Rb-Sr ages in Alpine biotites. Earth and Planetary Science Letters, 1, 19.

    Article  Google Scholar 

  • Baadsgaard, H., Lerbekmo, J. F., and McDougall, I., 1988. A radiometric age for the cretaceous-tertiary boundary based on K–Ar, Rb–Sr, and U–Pb ages of bentonites from Alberta, Saskatchewan and Montana. The Canadian Journal of Earth Sciences, 25, 1088–1097.

    Google Scholar 

  • Begemann, F., et al., 2001. Call for an improved set of decay constants for geochronological use. Geochimica et Cosmochimica Acta, 65(1), 111–121.

    Article  Google Scholar 

  • Birck, J. L., and Allègre, C. J., 1978. Chronology and chemical history of parent body of basaltic achondrites studied by Rb-87-Sr-87 method. Earth and Planetary Science Letters, 39(1), 37–51.

    Article  Google Scholar 

  • Birck, J. L., Fourcade, S., and Allègre, C. J., 1975. Rb-87 Sr-86 age of rocks from Apollo-15 landing site and significance of internal isochrons. Earth and Planetary Science Letters, 26(1), 29–35.

    Article  Google Scholar 

  • Brannon, J. C., Podosek, F. A., and McLimans, R. K., 1992. Alleghenian age of the Upper Mississippi Valley zinc-lead deposit determined by Rb–Sr dating of sphalerite. Nature, 356(6369), 509–511.

    Article  Google Scholar 

  • Campbell, N. R., and Wood, A., 1906. Radioactivity of the alkali metals. Proceedings of the Cambridge Philosophical Society, 14, 15–21.

    Google Scholar 

  • Charlier, B. L. A., Bachmann, O., Davidson, J. P., Dungan, M. A., and Morgan, D. J., 2007. The upper crustal evolution of a large silicic magma body: evidence from crystal-scale rb–sr isotopic Heterogeneities in the fish canyon magmatic system, Colorado. Journal of Petrology, 48(10), 1875–1894.

    Article  Google Scholar 

  • Christensen, J. N., Halliday, A. N., Leigh, K. E., Randell, R. N., and Kesler, S. E., 1995. Direct dating of sulfides by Rb–Sr: a critical test using the polaris Mississippi valley-type Zn–Pb deposit. Geochimica et Cosmochimica Acta, 59(24), 5191–5197.

    Article  Google Scholar 

  • Crowley, J. L., Schoene, B., and Bowring, S. A., 2007. U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology, 35(12), 1123–1126.

    Article  Google Scholar 

  • Davis, D. W., Gray, J., Cumming, G. L., and Baadsgaard, H., 1977. Determination of Rb-87 decay constant. Geochimica et Cosmochimica Acta, 41(12), 1745–1749.

    Article  Google Scholar 

  • De Laeter, J. R., et al., 1985. Rb–Sr, Sm–Nd and Pb–Pb geochronology of ancient gneisses from Mt. Narryer, Western Australia. Australian Journal of Earth Sciences, 32(4), 349–358.

    Article  Google Scholar 

  • De Laeter, J. R., et al., 2003. Atomic weights of the elements: review 2000. Pure and Applied Chemistry, 75(6), 683–800.

    Article  Google Scholar 

  • Delmoro, A., Puxeddu, M., Dibrozolo, F. R., and Villa, I. M., 1982. Rb–Ar and K–Ar ages in minerals at temperatures of 300°C–400°C from deep wells in the Larderello geothermal field (Italy). Contributions to Mineralogy and Petrology, 81(4), 340–349.

    Article  Google Scholar 

  • Dodson, M. H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40(3), 259–274.

    Article  Google Scholar 

  • Fairbairn, H. W., Hurley, P. M., and Pinson, W. H., 1961. The relation of discordant Rb–Sr mineral and whole rock ages in an igneous rock to its time of crystallization and subsequent Sr-87-Sr86 metamorphism. Geochimica et Cosmochimica Acta, 23(1–2), 135–144.

    Article  Google Scholar 

  • Faure, G., 1986. Principles of Isotope Geology. New York: Wiley, p. 589.

    Google Scholar 

  • Fernandes, V. A., Burgess, R., and Morris, A., 2009. Ar-40-Ar-39 age determinations of lunar basalt meteorites Asuka 881757, Yamato 793169, Miller Range 05035, La Paz Icefield 02205, Northwest Africa 479, and basaltic breccia Elephant Moraine 96008. Meteoritics & Planetary Science, 44(6), 805–821.

    Article  Google Scholar 

  • Field, D., and Raheim, A., 1979. Geologically meaningless Rb–Sr total rock isochron. Nature, 282(5738), 497–499.

    Article  Google Scholar 

  • Ganguly, J., and Ruiz, J., 1987. Time-temperature relation of mineral isochrons – a thermodynamic model, and illustrative examples for the Rb–Sr system. Earth and Planetary Science Letters, 81(4), 338–348.

    Article  Google Scholar 

  • Hahn, O., and Walling, E., 1938. Über die Möglichkeit geologischer Altersbestimmungen rubidiumhaltiger Mineralen und Gesteine. Zeitschrift für Anorganische und allgemeine Chemie, 236, 78–82.

    Article  Google Scholar 

  • Hahn, O., Strassman, F., Mattauch, J., and Ewald, H., 1943. Geologische Altersbestimmungen mit der Strontiummethode. Chemische Zeitung, 67, 55–56.

    Google Scholar 

  • Hans, U., Kleine, T., and Bourdon, B., 2013. Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth and Planetary Science Letters, 374, 204–214.

    Article  Google Scholar 

  • Hurst, R. W., Bridgwater, D., Collerson, K. D., and Wetherill, G. W., 1975. 3600 m.y. Rb–Sr ages from very early Archean gneisses from Saglek Bay, Labrador. Earth and Planetary Science Letters, 27(3), 393–403.

    Article  Google Scholar 

  • Jenkin, G. R. T., Rogers, G., Fallick, A. E., and Farrow, C. M., 1995. Rb–Sr closure temperatures in bi-mineral rocks – a mode effect and test for different diffusion models. Chemical Geology, 122(1–4), 227–240.

    Article  Google Scholar 

  • Jenkin, G. R. T., Ellam, R. M., Rogers, G., and Stuart, F. M., 2001. An investigation of closure temperature of the biotite Rb–Sr system: the importance of cation exchange. Geochimica et Cosmochimica Acta, 65(7), 1141–1160.

    Article  Google Scholar 

  • Kalsbeek, F., 1981. The northern extend of the Archean basement of Greenland – a review of Rb–Sr whole rock ages. Precambrian Research, 14(3–4), 203–219.

    Article  Google Scholar 

  • Kossert, K., 2003. Half-life measurements of Rb-87 by liquid scintillation counting. Applied Radiation and Isotopes, 59(5–6), 377–382.

    Article  Google Scholar 

  • Lanphere, M. A., and Baadsgaard, H., 2001. Precise K–Ar, Ar-40/Ar-39, Rb–Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard. Chemical Geology, 175(3–4), 653–671.

    Article  Google Scholar 

  • Long, L. E., 1964. Rb–Sr chronology of carn Chuinneag intrusion, Ross Shire, Scotland. Journal of Geophysical Research, 69(8), 1589–1597.

    Article  Google Scholar 

  • McCulloch, M. T., Compston, W., and Froude, D., 1983. Sm-Nd and Rb–Sr dating of Archean gneisses, eastern Yilgarn Block, Western Australia. Journal of the Geological Society of Australia, 30(1–2), 149–153.

    Article  Google Scholar 

  • Minster, J. F., and Allègre, C. J., 1976. Rb-87-Sr-87 history of Norton-County Enstatite Achondrite. Earth and Planetary Science Letters, 32(2), 191–198.

    Article  Google Scholar 

  • Minster, J. F., Birck, J. L., and Allègre, C. J., 1982. Absolute age of formation of chondrites studied by the Rb-87-Sr-87 method. Nature, 300(5891), 414–419.

    Article  Google Scholar 

  • Misawa, K., Tatsumoto, M., Dalrymple, G. B., and Yanai, K., 1993. An extremely low U/Pb source in the Moon – U–Th–Pb, Sm–Nd, Rb–Sr, and Ar-40 Ar-39 isotopic systematics and age of lunar meteorite Asuka 881757. Geochimica et Cosmochimica Acta, 57(19), 4687–4702.

    Article  Google Scholar 

  • Moorbath, S., Allaart, J. H., Bridgwater, D., and McGregor, V. R., 1977a. Rb–Sr ages of early Archean Supracrustal rocks and Amitsoq gneisses at Isua. Nature, 270(5632), 43–45.

    Article  Google Scholar 

  • Moorbath, S., Wilson, J. F., Goodwin, R., and Humm, M., 1977b. Further Rb–Sr age and isotope data on early and late Archean rocks from Rhodesian Craton. Precambrian Research, 5(3), 229–239.

    Article  Google Scholar 

  • Moorbath, S., Taylor, P. N., and Goodwin, R., 1981. Origin of granitic magma by crustal remobilization – Rb–Sr and Pb–Pb geochronology and isotope geochemistry of the late Archean Qorqut granite complex of southern West Greenland. Geochimica et Cosmochimica Acta, 45(7), 1051–1060.

    Article  Google Scholar 

  • Murthy, V. R., Evensen, N. M., Jahn, B., and Coscio, M. R., 1971. Rb–Sr ages and elemental abundances of K, Rb, Sr, and Ba in samples from ocean of storms. Geochimica et Cosmochimica Acta, 35(11), 1139–1153.

    Article  Google Scholar 

  • Nakai, S., Halliday, A. N., Kesler, S. E., and Jones, H. D., 1990. Rb–Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley-type ore deposits. Nature, 346(6282), 354–357.

    Article  Google Scholar 

  • Nakai, S., et al., 1993. Rb–Sr dating of sphalerite from mississippi valley-type (MVT) ore deposits. Geochimica et Cosmochimica Acta, 57(2), 417–427.

    Article  Google Scholar 

  • Nebel, O., and Mezger, K., 2006. Reassessment of the NBS SRM-607 K-feldspar as a high precision Rb/Sr and Sr isotope reference. Chemical Geology, 233(3–4), 337–345.

    Article  Google Scholar 

  • Nebel, O., and Mezger, K., 2008. Timing of thermal stabilization of the Zimbabwe Craton deduced from high-precision Rb–Sr chronology, Great Dyke. Precambrian Research, 164(3–4), 227–232.

    Article  Google Scholar 

  • Nebel, O., Mezger, K., Scherer, E., and Münker, C., 2005. High precision determinations of 87Rb/85Rb in geologic materials by MC-ICP-MS. International Journal of Mass Spectrometry, 246, 10–18.

    Article  Google Scholar 

  • Nebel, O., Scherer, E. E., and Mezger, K., 2011. Evaluation of the Rb-87 decay constant by age comparison against the U–Pb system. Earth and Planetary Science Letters, 301(1–2), 1–8.

    Article  Google Scholar 

  • Neumann, W., and Huster, E., 1976. Discussion of the 87Rb half-life by absolute counting. Earth and Planetary Science Letters, 33, 277–288.

    Article  Google Scholar 

  • Nicolaysen, L. O., 1961. Graphic interpretations of discordant age measurements on metamorphic rocks. Annals of the New York Academy of Sciences (Geochronology of Rock Systems), 91, 198–206.

    Article  Google Scholar 

  • Nyquist, L. E., Wooden, J., Bansai, B., Wiesmann, H., McKay, G., and Bogard, D. D., 1979. Rb–Sr age of the Shergotty achondrite and implications for metamorphic resetting of isochron ages. Geochimica et Cosmochimica Acta, 43, 1057–1074.

    Article  Google Scholar 

  • Nyquist, L. E., et al., 1986. Rb–Sr and Sm–Nd Internal isochron ages of a subophitic basalt clast and a matrix sample from the Y75011 eucrite. Journal of Geophysical Research-Solid Earth and Planets, 91(B8), 8137–8150.

    Article  Google Scholar 

  • Papanastassiou, D. A., and Wasserburg, G. J., 1970. Rb–Sr ages from ocean-of-storms. Earth and Planetary Science Letters, 8(4), 269–278.

    Article  Google Scholar 

  • Papanastassiou, D. A., Wasserburg, G. J., and Burnett, D. S., 1970. Rb–Sr ages of lunar rocks from the sea of tranquillity. Earth and Planetary Science Letters, 8(1), 1–19.

    Article  Google Scholar 

  • Pidgeon, R. T., and Johnson, M. R. W., 1974. Comparison of zircon U–Pb and whole rock Rb–Sr systems in three phases of Carn Chuinneag granite, Northern Scotland. Earth and Planetary Science Letters, 24(1), 105–112.

    Article  Google Scholar 

  • Rankenburg, K., Brandon, A. D., and Norman, M. D., 2007. A Rb–Sr and Sm–Nd isotope geochronology and trace element study of lunar meteorite LaPaz Icefield 02205. Geochimica et Cosmochimica Acta, 71(8), 2120–2135.

    Article  Google Scholar 

  • Riley, G. H., and Compston, W., 1962. Theoretical and technical aspects of Rb–Sr geochronology. Geochimica et Cosmochimica Acta, 26(DEC), 1255–1281.

    Article  Google Scholar 

  • Rotenberg, E., Davis, D. W., Amelin, Y., Ghosh, S., and Bergquist, B. A., 2012. Determination of the decay-constant of Rb-87 by laboratory accumulation of Sr-87. Geochimica et Cosmochimica Acta, 85, 41–57.

    Article  Google Scholar 

  • Roth, A. S. G., et al., 2013. Inherited Nd-142 anomalies in Eoarchean protoliths. Earth and Planetary Science Letters, 361, 50–57.

    Article  Google Scholar 

  • Schmitz, M. D., and Bowring, S. A., 2001. U–Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U–Pb geochronology and its application to young volcanic rocks. Geochimica et Cosmochimica Acta, 65(15), 2571–2587.

    Article  Google Scholar 

  • Shih, C. Y., et al., 1985. Chronology and petrogenesis of a 1.8-g lunar granitic clast – 14321,1062. Geochimica et Cosmochimica Acta, 49(2), 411–426.

    Article  Google Scholar 

  • Shih, C. Y., Nyquist, L. E., Bansal, B. M., and Wiesmann, H., 1992. Rb–Sr and Sm–Nd chronology of an Apollo-17 Kreep basalt. Earth and Planetary Science Letters, 108(4), 203–215.

    Article  Google Scholar 

  • Siebel, W., 1994. Inferences about magma mixing and thermal events from isotopic variations in redwitzites near the KTB site, Projektleitung Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland im Niedersächsischen Landesamt für Bodenforschung.

    Google Scholar 

  • Siebel, W., Reitter, E., Wenzel, T., and Blaba, U., 2005. Sr isotope systematics of K-feldspars in plutonic rocks revealed by the Rb–Sr microdrilling technique. Chemical Geology, 222(3–4), 183–199.

    Article  Google Scholar 

  • Steiger, R. H., and Jäger, E., 1977. Subcommission on geochronology – convention on use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters, 36(3), 359–362.

    Article  Google Scholar 

  • Verschure, R. H., et al., 1980. On the thermal stability of Rb–Sr and K–Ar biotite systems – evidence from coexisting Sveconorwegian (ca. 870 ma) and Caledonian (ca. 400 Ma) biotites in SW Norway. Contributions to Mineralogy and Petrology, 74(3), 245–252.

    Article  Google Scholar 

  • Villa, I. M., 1998. Isotopic closure. Terra Nova, 10(1), 42–47.

    Article  Google Scholar 

  • Von Blanckenburg, F., Villa, I. M., Baur, H., Morteani, G., and Steiger, R. H., 1989. Time calibrations of a PT-path from the western Tauern window, eastern Alps – the problem of closure temperatures. Contributions to Mineralogy and Petrology, 101(1), 1–11.

    Article  Google Scholar 

  • Vroon, P. Z., van der Wagt, B., Koornneef, J. M., and Davies, G. R., 2008. Problems in obtaining precise and accurate Sr isotope analysis from geological materials using laser ablation MC-ICPMS. Analytical and Bioanalytical Chemistry, 390(2), 465–476.

    Article  Google Scholar 

  • Waight, T., Baker, J., and Willigers, B., 2002a. Rb isotope dilution analyses by MC-ICPMS using Zr to correct for mass fractionation: towards improved Rb–Sr geochronology? Chemical Geology, 186(1–2), 99–116.

    Article  Google Scholar 

  • Waight, T., Baker, J., and Peate, D., 2002b. Sr isotope ratio measurements by double-focusing MC-ICPMS: techniques, observations and pitfalls. International Journal of Mass Spectrometry, 221(3), 229–244.

    Article  Google Scholar 

  • Weatherly, D. K., and Hanley, R. W., 2013. Flash vaporization during earthquakes evidenced by gold deposits. Nature Geoscience, 6, 294–298.

    Article  Google Scholar 

  • Wendt, I., 1993. Isochron or mixing line. Chemical Geology, 104(1–4), 301–305.

    Article  Google Scholar 

  • Williams, I. S., Tetley, N. W., Compston, W., and McDougall, I., 1982. A Comparison of K–Ar and Rb–Sr Ages of rapidly cooled igneous rocks – two points in the Paleozoic time scale re-evaluated. Journal of the Geological Society, 139(SEP), 557–568.

    Article  Google Scholar 

  • Willigers, B. J. A., Mezger, K., and Baker, J., 2004. Development of high precision Rb–Sr phlogopite and biotite geochronology; an alternative to 40Ar/39Ar tri-octahedral mica dating. Chemical Geology, 213(4), 339–358.

    Article  Google Scholar 

  • Yang, J. H., and Zhou, X. H., 2001. Rb–Sr, Sm–Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology, 29(8), 711–714.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Nebel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Nebel, O. (2014). Rb–Sr Dating. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_116-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_116-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics