Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Magnetostratigraphic Dating

  • Miguel Garces
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_115-1


Magnetostratigraphy relies on the ability of sedimentary rocks to acquire a remanent magnetization when they form, which parallels the direction of the Earth’s ambient magnetic field. Since the geomagnetic field has undergone multiple nonperiodic reversals through Earth history, a magnetic zonation of sedimentary sequences is feasible according to the polarity of the rock magnetization. A magnetostratigraphic zonation allows dividing the stratigraphic record into time slices which can be correlated worldwide. Magnetostratigraphic dating refers to the identification in the stratigraphic record of magnetozones, which can be correlated to age-equivalent geomagnetic chrons. The compiled absolute ages of geomagnetic chrons form the basis for the geomagnetic polarity time scale (GPTS), which is routinely revised with new radiometric or astronomic calibrations (Fig. 1).


Magnetic Mineral Natural Remanent Magnetization Reversal Test Paleomagnetic Direction Geomagnetic Reversal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bellon, H., Bordet, P., and Montenat, C., 1983. Chronologie du magmatisme néogène des Cordillères bétiques (Espagne méridionale). Bulletin de la Société géologique de France, 25, 205–217.Google Scholar
  2. Butler, R. F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Boston, MA: Blackwell, p. 238.Google Scholar
  3. Cande, S. C., and Kent, D. V., 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 97(B10), 13917–13951, doi:10.1029/92JB01202.CrossRefGoogle Scholar
  4. Cande, S. C., and Kent, D. V., 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 100, 6093–6095.CrossRefGoogle Scholar
  5. Channell, J. E. T., Galeotti, S., Martin, E. E., Billups, K., Scher, H. D., and Stoner, J. S., 2003. Eocene to Miocene magnetostratigraphy, biostratigraphy, and chemostratigraphy at ODP Site 1090 (sub-Antarctic South Atlantic). GSA Bulletin, 115(5), 607–623.CrossRefGoogle Scholar
  6. Cox, A., Doell, R., and Dalrymple, G., 1964. Reversals of the Earth’s magnetic field. Science, 144, 1537–1543.CrossRefGoogle Scholar
  7. Evans, M., and Heller, F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. London: Elsevier, p. 299.Google Scholar
  8. Garcés, M., Krijgsman, W., and Agustí, J., 2001. Chronostratigraphic framework and evolution of the Fortuna basin (Eastern Betics) since the Late Miocene. Basin Research, 13(2), 199–216.CrossRefGoogle Scholar
  9. Gee, J. S., and Kent, D. V., 2007. Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In Kono, M. (ed.), Geomagnetism, volume 5 of Treatise on Geophysics. Amsterdam: Elsevier, pp. 455–507.CrossRefGoogle Scholar
  10. Gradstein, F., Ogg, J., and Smith, A., 2004. A Geologic Time Scale 2004. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  11. Gradstein, F., Ogg, J., Schmitz, M., and Ogg, G., 2012. The Geologic Time Scale 2012. Amsterdam: Elsevier.Google Scholar
  12. Heirtzler, J. R., Dickson, G. O., Herron, E. M., Pitman, W. C., and Le Pichon, X., 1968. Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents. Journal of Geophysical Research, 73(6), 2119–2136.CrossRefGoogle Scholar
  13. Hinnov, L. A., and Ogg, J. G., 2007. Cyclostratigraphy and the astronomical time scale. Stratigraphy, 4(2/3), 239–251.Google Scholar
  14. Johnson, N. M., and McGee, V. E., 1983. Magnetic polarity stratigraphy: stochastic properties of data, sampling problems, and the evaluation of interpretations. Journal of Geophysical Research, 88(B2), 1213–1221.CrossRefGoogle Scholar
  15. Johnson, N. M., Stix, J., Tauxe, L., Cerveny, P. F., and Tahirkeli, R. A. K., 1985. Paleomagnetic chronology, fluvial processes and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan. Journal of Geology, 93, 27–40.CrossRefGoogle Scholar
  16. Kirschvink, J. L., 1980. The least squares lines and plane analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society, 62, 699–718.CrossRefGoogle Scholar
  17. Krijgsman, W., and Kent, D. V., 2004. Non-uniform occurrence of short-term polarity fluctuations in the geomagnetic field? New results from middle to late Miocene sediments of the North Atlantic (DSDP site 608). In Channell, J. E. T., Kent, D. V., Lowrie, W., and Meert, J. G. (eds.), Timescales of the Paleomagnetic Field. Washington, DC: American Geophysical Union, pp. 1–14.Google Scholar
  18. Krijgsman, W., Garcés, M., Agustí, J., Raffi, I., Taberner, C., and Zachariasse, W. J., 2000. The ‘Tortonian salinity crisis’ of the eastern Betics (Spain). Earth and Planetary Science Letters, 181, 497–511.CrossRefGoogle Scholar
  19. Kuiper, K. F., Krijgsman, W., Garcés, M., and Wijbrans, J. R. R., 2006. Revised isotopic (40Ar/39Ar) age for the lamproite volcano of Cabezos Negros, Fortuna Basin (Eastern Betics, SE Spain). Palaeogeography Palaeoclimatology Palaeoecology, 238(1–4), 53–63.CrossRefGoogle Scholar
  20. Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R., 2008. Synchronizing rock clocks of Earth history. Science, 320(5875), 500–504.CrossRefGoogle Scholar
  21. Lancis, C., Tent-Manclús, J.-E., Soria, J.-M., Caracuel, J.-E., Corbí, H., Dinarès-Turell, J., Estévez, A., et al., 2010. Nanoplankton biostratigraphic calibration of the evaporitic events in the Neogene Fortuna Basin (SE Spain). Geobios, 43(2), 201–217.CrossRefGoogle Scholar
  22. Langereis, C. G., Linssen, J. H., Mullender, T. A. T., and Zijderveld, J. D. A., 1989. Demagnetisation. In James, D. E. (ed.), The Encyclopedia of Solid Earth Geo- physics. New York: Van Nostrand Reinhold, pp. 201–211.Google Scholar
  23. Langereis, C. G., Krijgsman, W., Muttoni, G., and Menning, M., 2010. Magnetostratigraphy – concepts, definitions, and applications. Newsletters on Stratigraphy, 43(3), 207–233.CrossRefGoogle Scholar
  24. Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and un- blocking temperature properties. Geophysical Research Letters, 17, 159–162.CrossRefGoogle Scholar
  25. Opdyke, N. D., and Channell, J. E. T., 1996. Magnetic Stratigraphy. San Diego, CA: Academic Press.Google Scholar
  26. Opdyke, N. D., Glass, B., Hays, P. J., and Foster, J., 1966. Paleomagnetic study of Antarctica deep-sea cores. Science, 154, 349–357.CrossRefGoogle Scholar
  27. Renne, P. R., 1998. Absolute ages aren’t exactly. Science, 282(5395), 1840–1841.CrossRefGoogle Scholar
  28. Sadler, P. M., 1981. Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology, 89, 569–584.CrossRefGoogle Scholar
  29. Talling, P. J., and Burbank, D. W., 1993. Assessment of uncertainties in magnetostratigraphic dating of sedimentary strata. In Aissaoui, D., McNeill, D., and Hurley, N. (eds.), Applications of Paleomagnetism to Sedimentary Geology. Tulsa, OK: SEPM, pp. 59–69. SEPM Special Publication No. 49.Google Scholar
  30. Tauxe, L., 1998. Paleomagnetic Principles and Practice. Dordrecht: Kluwer, p. 299.Google Scholar
  31. Tauxe, L., and Gallet, Y., 1991. A jacknife for magnetostratigraphy. Geophysical Research Letters, 18(9), 1783–1786.CrossRefGoogle Scholar
  32. Vasiliev, I., Krijgsman, W., Stoica, M., and Langereis, C. G., 2005. Mio-Pliocene magnetostratigraphy in the southern Carpathian foredeep and Mediterranean-Paratethys correlations. Terra Nova, 17(4), 376–384.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.University of BarcelonaBarcelonaSpain