Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Meteorites (U–Pb)

  • Yuri Amelin
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_111-1



Determination of ages of meteorites and their components using decay of radioactive isotopes 238U and 235U and accumulation of their decay products (daughter isotopes) 206Pb and 207Pb.


Meteorites contain trace amounts of uranium, and their ages can be calculated from the quantities of accumulated radiogenic isotopes of Pb. Two long-lived isotopes of uranium 235U (0.7205 %, half-life 4.468 × 109 year) and 238 U(99.2736 %, half-life 0.704 × 109 year; isotopic abundances based on the data of Brennecka and Wadhwa 2012, half-lives from Jaffey et al. 1971) decay to stable isotopes of lead 207Pb and 206Pb. The dual nature of the U–Pb decay scheme has two important implications for geochronology (Ludwig 1998; Amelin 2006; Schoene 2014). First, consistency of the dates calculated from two parent-daughter pairs, 238U– 206Pb* and 235U– 207Pb* (the asterisk indicates radiogenic Pb),...


Inductively Couple Plasma Mass Spectrometry Thermal Ionization Mass Spectrometry Radiogenic Isotope Early Solar System Refractory Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Amelin, Y., 2006. The prospect of high-precision Pb isotopic dating of meteorites. Meteoritics and Planetary Science, 41, 7–17.CrossRefGoogle Scholar
  2. Amelin, Y., 2008. U–Pb ages of angrites. Geochimica et Cosmochimica Acta, 72, 221–232.CrossRefGoogle Scholar
  3. Amelin, Y., Connelly, J., Zartman, R. E., Chen, J. H., Göpel, C., and Neymark, L. A., 2009. Modern U–Pb chronometry of meteorites: advancing to higher time resolution reveals new problems. Geochimica et Cosmochimica Acta, 73, 5212–5223.CrossRefGoogle Scholar
  4. Bouvier, A., Spivak-Birndorf, L. J., Brennecka, G. A., and Wadhwa, M., 2011. New constraints on early Solar System chronology from Al–Mg and U–Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976. Geochimica et Cosmochimica Acta, 75, 5310–5323.CrossRefGoogle Scholar
  5. Brennecka, G. A., and Wadhwa, M., 2012. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early solar system. Proceedings of the National Academy of Sciences, 109, 9299–9303.CrossRefGoogle Scholar
  6. Brennecka, G. A., Weyer, S., Wadhwa, M., Janney, P. E., Zipfel, J., and Anbar, A. D., 2010. 238U/235U variations in meteorites: extant 247Cm and implications for Pb–Pb dating. Science, 327, 449–451.CrossRefGoogle Scholar
  7. Connelly, J. N., Bizzarro, M., Krot, A. N., Nordlund, Å., Wielandt, D., and Ivanova, M. A., 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651–655.CrossRefGoogle Scholar
  8. Hiess, J., Condon, D. J., McLean, N., and Noble, S. R., 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335, 1610–1614.CrossRefGoogle Scholar
  9. Kaltenbach, A, Stirling, C.H., and Amelin, Y., 2012. Uranium isotopic composition of carbonaceous chondrites. 43rd Lunar and Planetary Science Conference, abstract 1691.Google Scholar
  10. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., and Essling, A. M., 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C, 4, 1889–1906.CrossRefGoogle Scholar
  11. Ludwig, K. R., 1998. On the treatment of concordant uranium–lead ages. Geochimica et Cosmochimica Acta, 62, 665–676.CrossRefGoogle Scholar
  12. Schoene, B., 2014. U–Th–Pb geochronology. In Rudnick, R. (ed.), Treatise on Geochemistry (Second Edition), Vol. 4: The Crust, Oxford, UK, Elsevier, pp. 341–378.CrossRefGoogle Scholar
  13. Tera, F., and Wasserburg, G. J., 1972. U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters, 14, 281–304.CrossRefGoogle Scholar
  14. Wadhwa, M., Amelin, Y., Bogdanovski, O., Shukolyukov, A., Lugmair, G. W., and Janney, P., 2009. Ancient relative and absolute ages for a basaltic meteorite: implications for timescales of planetesimals accretion and differentiation. Geochimica et Cosmochimica Acta, 73, 5189–5201.CrossRefGoogle Scholar
  15. Wetherill, G. W., 1956. Discordant uranium–lead ages. Transactions of the American Geophysical Union, 37, 320–326.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia