Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Sediments, Terrestrial (Paleomagnetism)

  • Wout Krijgsman
  • Gillian Turner
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_110-1

Synonyms

Definitions

Geomagnetic north/south poles: the points where the axis of the geocentric magnetic dipole that best fits the geomagnetic field intersects the surface of the earth. The south (north) pole of the best fitting dipole is actually in the northern (southern) hemisphere during Normal polarity, and is, by convention, called the north (south) geomagnetic pole.

Virtual geomagnetic poles (VGP’s): the geomagnetic poles corresponding to the geocentric dipole that would produce an observed palaeomagnetic direction. VGP’s are calculated from the declination and inclination of a paleomagnetic measurement and the latitude and longitude of the site from which the measurement was obtained.

Magnetostratigraphy: the application of the well-known principles of stratigraphy to the observed reversal pattern of the geomagnetic polarity recorded in rock sequences.

Paleosecular variation: the gradual changes in direction and intensity of...

Keywords

Secular Variation Magnetic Mineral Terrestrial Sediment Virtual Geomagnetic Pole Spherical Harmonic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Abdul Aziz, H., Hilgen, F., Krijgsman, W., Sanz, E., and Calvo, J. P., 2000. Astronomical forcing of sedimentary cycles in the middle to late Miocene continental Calatayud Basin (NE Spain), Earth Planet. Science Letters, 177, 9–22.Google Scholar
  2. Bucur, I. 1994. The direction of the terrestrial magnetic field in France during the last 21 centuries. Recent progress. Physics of the Earth and Planetary Interiors, 87, 95–109.CrossRefGoogle Scholar
  3. Dupont-Nivet, G., and Krijgsman, W., 2012. Magnetostratigraphic methods and applications. In Busby, C., and Azor, A. (eds.), Tectonics of Sedimentary Basins: Recent Advances. Hoboken: Blackwell Publishing Ltd, pp. 80–94.CrossRefGoogle Scholar
  4. Gallet, Y., Genevey, A., and Le Goff, M., 2002. Three millennia of directional variation of the Earth’s magnetic field in western Europe as revealed by archaeological artefacts. Physics of the Earth and Planetary Interiors, 131, 81–89.CrossRefGoogle Scholar
  5. Gómez-Paccard, M., Chauvin, A., Lanos, P., and Thiriot, J., 2008. New archeointensity data from Spain and the geomagnetic dipole moment in western Europe over the past 2000 years. Journal of Geophysical Research, 113, B09103, doi:10.1029/2008JB005582.CrossRefGoogle Scholar
  6. Haines, G. V., 1985. Spherical cap harmonic analysis. Journal of Geophysical Research, 90, 2583–2591.CrossRefGoogle Scholar
  7. Hilgen, F. J., Krijgsman, W., Langereis, C. G., and Lourens, L. J., 1997. Breakthrough made in dating of the geological record. EOS, Transactions American Geophysical Union, 78, 285–288.CrossRefGoogle Scholar
  8. Jackson, A., Jonkers, A. R. T., and Walker, M. R., 2000. Four centuries of geomagnetic secular variation from historical records. Philosophical Transactions of the Royal Society of London A, 358, 957–990.CrossRefGoogle Scholar
  9. Jackson, M., Bowles, J. A., Lascu, I., and Sølheid, P., 2010. Deconvolution of u channel magnetometer data: experimental study of accuracy, resolution, and stability of different inversion methods. Geochemistry, Geophysics, Geosystems, 11, Q07Y10, doi:10.1029/2009GC002991.Google Scholar
  10. Kent, D. V., and Olsen, P. E., 1999. Astronomically tuned geomagnetic polarity timescale for the Late Triassic. Journal of Geophysical Research-Solid Earth, 104, 12831–12841.CrossRefGoogle Scholar
  11. Korte, M., Donadini, F., and Constable, C. G., 2009. Geomagnetic field for 0–3 ka: 2. A new series of time-varying models. Geochemistry, Geophysics, Geosystems, 10, Q06008, doi:10.1029/2008GC002297.CrossRefGoogle Scholar
  12. Korte, M., Constable, C. G., Donadini, F., and Holme, R., 2011. Reconstructing the Holocene geomagnetic field. Earth and Planetary Science Letters, 312, 497–505, doi:10.1016/j.epsl.2011.10.031.CrossRefGoogle Scholar
  13. Langereis, C. G., Krijgsman, W., Muttoni, G., and Menning, M., 2010. Magnetostratigraphy – concepts, definitions, and application, Newslett. Stratigraphy, 43, 207–233, doi:10.1127/0078-0421/2010/0043-0207.CrossRefGoogle Scholar
  14. Levi, S., and Banerjee, S. K., 1976. On the possibility of obtaining relative paleointensities from lake sediments. Earth and Planetary Science Letters, 29, 219–226.CrossRefGoogle Scholar
  15. Mackereth, F. J. H., 1958. A portable core sampler for lake deposits. Limnology and Oceanography, 3, 181–191.CrossRefGoogle Scholar
  16. Opdyke, N. D., and Channell, J. E. T., 1996. Magnetic Stratigraphy. San Diego: Academic Press, p. 346.Google Scholar
  17. Pavón-Carrasco, F. J., Osete, M. L., Torta, J. M., and Gaya-Piqué, L. M., 2009. A regional archaeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: applications to archaeomagnetic dating. Geochemistry, Geophysics, Geosystems, 10, Q03013, doi:10.1029/2008GC002244.CrossRefGoogle Scholar
  18. Pavón-Carrasco, F. J., Osete, M. L., and Torta, J. M., 2010. Regional modeling of the geomagnetic field in Europe from 6000 BC to 1000 BC. Geochemistry, Geophysics, Geosystems, 11, Q11008, doi:10.1029/2010GC003197.CrossRefGoogle Scholar
  19. Pavón-Carrasco, F. J., Rodriguez-Gonzalez, J., Osete, M. L., and Torta, J. M., 2011. A Matlab tool for archaeomagnetic dating. Journal of Archaeological Science, 38, 408–419, doi:10.1016/j.jas.2010.09.021.CrossRefGoogle Scholar
  20. Roberts, A. P., and Turner, G. M., 2013. Geomagnetic excursions and secular variations. In Elias, S. A. (ed.), The Encyclopedia of Quaternary Science. Amsterdam: Elsevier, Vol. 1, pp. 705–720.CrossRefGoogle Scholar
  21. Roberts, A. P., Chang, L., Rowan, C. J., Horng, C.-S., and Florindo, F., 2011. Magnetic properties of sedimentary greigite (Fe3S4): an update. Reviews of Geophysics, 49(1).Google Scholar
  22. Tauxe, L., 2010. Essentials of Paleomagnetism. Berkeley: University of California Press.Google Scholar
  23. Tauxe, L., and Yamazaki, T., 2007. Paleointensities. In Schubert, G. (ed.), Treatise on Geophysics. Oxford: Elsevier, pp. 509–564, Geomagnetism 5.CrossRefGoogle Scholar
  24. Thébault, E., Schott, J. J., and Mandea, M., 2006. Revised spherical cap harmonic analysis (R-SCHA): validation and properties. Journal of Geophysical Research, 111, B01102, doi:10.1029/2005JB003836.Google Scholar
  25. Turner, G. M., and Thompson, R., 1981. Lake sediment record of the geomagnetic secular variation in Britain during Holocene times. Geophysical Journal of the Royal Astronomical Society, 65, 703–725.CrossRefGoogle Scholar
  26. Turner, G. M., and Thompson, R., 1982. Detransformation of the British geomagnetic secular variation record for Holocene times. Geophysical Journal of the Royal Astronomical Society, 70, 789–792.CrossRefGoogle Scholar
  27. Turner, G. M., Rasson, J. L., and Reeves, C. V., 2007. Observation and measurement techniques. In Schubert, G. (ed.), Treatise on Greophysics. Amsterdam: Elsevier, Vol. 5, pp. 93–146.CrossRefGoogle Scholar
  28. Vasiliev, I., Franke, C., Meeldijk, J. D., Dekkers, M. J., Langereis, C. G., and Krijgsman, W., 2008. Putative greigite magnetofossils from the Pliocene epoch. Nature Geoscience, 1, 782–786, doi:10.1038/ngeo335.CrossRefGoogle Scholar
  29. Zijderveld, J. D. A., 1967. Demagnetisation of rocks: analysis of results. In Collinson, D., Creer, K., and Runcorn, S. (eds.), Methods in Paleomagnetism. New York: Elsevier, pp. 254–286.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of UtrechtUtrechtThe Netherlands
  2. 2.School of Chemical and Physical SciencesVictoria University of WellingtonWellingtonNew Zealand