Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Continental Drift (Paleomagnetism)

  • Trond H. Torsvik
  • Pavel V. Doubrovine
  • Mathew Domeier
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_107-1


Paleomagnetism is the study of the Earth’s ancient magnetic field through the record of remanent magnetism preserved in rocks. The directions of remanent magnetization are used to deduce the position of the Earth’s magnetic pole relative to the study location at the time when this magnetization was acquired. By studying magnetizations of varying age from a single lithospheric plate, one can construct a path of apparent polar wandering (APWP) that tracks the motion of that plate relative to the geographic pole. A well-defined APWP can serve as a geochronological tool, i.e., for dating magnetizations of unknown age through a comparison of their directions with those expected from the reference APWP. Paleomagnetism can be used to date any geologic event that engenders the acquisition of remanent magnetization, including formation of igneous and sedimentary rocks, deposition of ore minerals, episodes of deformation, and other remagnetization processes.




Remanent Magnetization Confidence Region Polar Motion Paleomagnetic Data Continental Drift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Andersen, T. B., Jamtveit, B., Dewey, J. F., and Swensson, E., 1991. Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides. Terra Nova, 3, 303–310.CrossRefGoogle Scholar
  2. Cox, A., 1970. Latitude dependence of the angular dispersion of the geomagnetic field. Geophysical Journal of the Royal Astronomical Society, 20, 253–269.CrossRefGoogle Scholar
  3. Creer, K. M., Irving, E., and Runcorn, S. K., 1954. The direction of the geomagnetic field in remote epochs in Great Britain. Journal of Geomagnetism and Geoelectricity, 250, 164–168.Google Scholar
  4. Domeier, M., Van der Voo, R., and Denny, F. B., 2011. Widespread inclination shallowing in Permian and Triassic paleomagnetic data from Laurentia: support from new paleomagnetic data from Middle Permian shallow intrusions in southern Illinois (USA) and virtual geomagnetic pole distributions. Tectonophysics, 511, 38–52.CrossRefGoogle Scholar
  5. Eide, E. A., Torsvik, T. H., and Andersen, T. B., 1997. Absolute dating of fault breccias: late Palaeozoic and early Cretaceous fault reactivation in Western Norway. Terra Nova, 9, 135–139.CrossRefGoogle Scholar
  6. Fisher, R., 1953. Dispersion on a sphere. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 217(1130), 295–305.CrossRefGoogle Scholar
  7. Hess, H. H., 1962. History of ocean basins. In Engle, E. A. J. (ed.), Petrologic Studies. New York: Geological Society of America.Google Scholar
  8. Jupp, P. E., and Kent, J. T., 1987. Fitting smooth paths to spherical data. Applied Statistics, 36, 34–36.CrossRefGoogle Scholar
  9. McElhinny, M. W., and McFadden, P. L., 2000. Paleomagnetism: Continents and Oceans. San Diego: Academic, 386 pp.Google Scholar
  10. McFadden, P. L., and Lowes, F. J., 1981. The discrimination of mean directions drawn from Fisher distribution. Geophysical Journal of the Royal Astronomical Society, 67, 19–33.CrossRefGoogle Scholar
  11. McKenzie, D. P., and Parker, R. L., 1967. The North Pacific: an example of tectonics on a sphere. Nature, 216, 1276–1280.CrossRefGoogle Scholar
  12. Merrill, R. T., McElhinny, M. W., and McFadden, P. L., 1996. The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. San Diego: Academic, 531 pp.Google Scholar
  13. Miller, J. D., and Kent, D. V., 1988. Regional trends in the timing of Alleghenian remagnetization in the Appalachians. Geology, 16, 588–591.CrossRefGoogle Scholar
  14. Oliver, J., 1986. Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99–102.CrossRefGoogle Scholar
  15. Pannalal, S. J., Symons, D. T. A., and Sangster, D. F., 2004. Paleomagnetic dating of upper Mississippi valley zinc-lead mineralisation, WI, USA. Journal of Applied Geophysics, 56, 135–153.CrossRefGoogle Scholar
  16. Pannalal, S. J., Symons, D. T. A., and Sangster, D. F., 2008a. Paleomagnetic evidence for an early Permian Age of the Lisheen Zn-Pb deposit, Ireland. Economic Geology, 103, 1641–1655.CrossRefGoogle Scholar
  17. Pannalal, S. J., Symons, D. T. A., and Sangster, D. F., 2008b. Paleomagnetic evidence of a Variscan age for the epigenetic Galmoy zinc-lead deposit, Ireland. Terra Nova, 20, 385–393.CrossRefGoogle Scholar
  18. Reynolds, R. L., Goldhaber, M. B., and Snee, L. W., 1997. Paleomagnetic and 40Ar/39Ar results from the Grant intrusive breccia and comparison to the Permian Downeys Bluff sill - evidence for Permian igneous activity at Hicks Dome, southern Illinois Basin. U. S. Geological Survey Bulletin 2094-G, 16 pp.Google Scholar
  19. Runcorn, S. K., 1956. Palaeomagnetic comparisons between Europe and North America. Proceedings of the Geological Association of Canada, 8, 77–85.Google Scholar
  20. Symons, D. T. A., and Stratakos, K. K., 2002. Paleomagnetic dating of Alleghanian orogenesis and mineralisation in the Mascot-Jefferson City zinc district of East Tennessee, USA. Tectonophysics, 348, 51–72.CrossRefGoogle Scholar
  21. Symons, D. T. A., Pannalal, S. J., Kawasaki, K., Sangster, D. F., and Stanley, G. A., 2007. Paleomagnetic age of the Magcobar Ba deposit, Silvermines, Ireland. In Andrew, C. J., et al. (eds.), Mineral Exploration and Research: Digging Deeper. Dublin: Irish Association for Economic Geology, pp. 377–380.Google Scholar
  22. Torsvik, T. H., Sturt, B. A., Swensson, E., Andersen, T. B., and Dewey, J. F., 1992. Palaeomagnetic dating of fault rocks: evidence for Permian and Mesozoic movements and brittle deformation along the extensional Dalsfjord Fault, western Norway. Geophysical Journal International, 109, 565–580.CrossRefGoogle Scholar
  23. Torsvik, T. H., Smethurst, M. T., Meert, J. G., Van der Voo, R., McKerrow, W. S., Brasier, M. D., Sturt, B. A., and Walderhaug, H. J., 1996. Continental break-up and collision in the Neoproterozoic and Paleozoic—a tale of Baltica and Laurentia. Earth Science Reviews, 40, 229–258.CrossRefGoogle Scholar
  24. Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tovher, E., Meert, J. G., McCausland, P. J., and Cocks, L. R. M., 2012. Phanerozoic polar wander, paleogeography and dynamics. Earth Science Reviews, 114, 325–368.CrossRefGoogle Scholar
  25. Van der Voo, R., 1990. Phanerozoic paleomagnetic poles from Europe and North America and comparisons with continental reconstructions. Reviews of Geophysics, 28, 167206.Google Scholar
  26. Van der Voo, R., and Torsvik, T. H., 2012. The history of remagnetization of sedimentary rocks: deceptions, developments, discoveries. Geological Society, London, Special Publications, 371, 23–53 doi: 10.1144/SP371.2.Google Scholar
  27. Vine, F. J., and Matthews, D. H., 1963. Magnetic anomalies over oceanic ridges. Nature, 199, 947–949.CrossRefGoogle Scholar
  28. Wegener, A., 1912. Die Entstehung der Kontinente. Petermann’s Mittelungen aus Justus Perthes’ Geographischer Anstalt, 58, 185–195, 253–256, 305–309.Google Scholar
  29. Wegener, A., 1915. Die Entstehung der Kontinente und Ozeane. Brunswick: Vieweg.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Trond H. Torsvik
    • 1
  • Pavel V. Doubrovine
  • Mathew Domeier
  1. 1.Centre for Earth Evolution and Dynamics (CEED)University of OsloBlindernNorway