Encyclopedia of Scientific Dating Methods

2015 Edition
| Editors: W. Jack Rink, Jeroen W. Thompson

Alpine Terranes (K–Ar/Ar–Ar)

  • Jan R. WijbransEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-6304-3_43

Synonyms

Tertiary metamorphic terranes; Young metamorphic terranes

Definition

Alpine terranes in the strictest sense can be defined geographically as terranes belonging to the region in south–central Europe from the Maritime Alps and Ligurian Alps along the Mediterranean coast between Genova and Marseille in the west and the Vienna basin in the east where the Tauern window ends in the northern belt and the Julian Alps of Slovenia in the southern belt.

In a geological sense, much of southern Europe from the Betics in southern Spain and the Rif in northern Morocco to the Hellenides in Greece much of southern Europe forms part of the Alpine orogeny. In fact, when viewed as resulting from the collision of the Arabian–African continent in the south and Eurasia in the north, the Alpine orogeny can be traced much further to the southeast to include Turkey and metamorphic complexes along the Persian Gulf to end in Oman in the far southeast (Figure 1).
This is a preview of subscription content, log in to check access.

Bibliography

  1. Altherr, R., and Siebel, W., 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143, 397–415.CrossRefGoogle Scholar
  2. Baxter, E. F., DePaolo, D. J., and Renne, P. R., 2002. Spatially correlated anomalous 40Ar/39Ar “age” variations in biotites about a lithologic contact near Simplon Pass, Switzerland: a mechanistic explanation for excess Ar. Geochimica et Cosmochimica Acta, 66, 1067–1083.CrossRefGoogle Scholar
  3. Beltrando, M., Lister, G. S., Forster, M., Dunlap, W. J., Fraser, G., and Hermann, J., 2008. Dating microstructures by the 40Ar/39Ar step-heating technique: deformation-pressure-temperature-time history of the Penninic units of the Western Alps. Lithos, 113, 801–819.CrossRefGoogle Scholar
  4. Bertotti, G., Seward, D., Wijbrans, J., Ter Voorde, M., and Hurford, A. J., 1999. Crustal thermal regime prior to, during, and after rifting: a geochronological and modeling study of the Mesozoic South Alpine rifted margin. Tectonics, 18, 185–200.CrossRefGoogle Scholar
  5. Blanckenburg, F., 1992. Combined high-precision chronometry and geochemical tracing using accessory minerals – Applied to the Central-Alpine Bergell intrusion, Central Europe. Chemical Geology, 100, 19–40.CrossRefGoogle Scholar
  6. Brooker, R. A., Du, Z., Blundy, J. D., Kelley, S. P., Allan, N. L., Wood, B. J., Chamorro, E. M., Wartho, J. A., and Purton, J. A., 2003. The ‘zero charge’ partitioning behaviour of noble gases during mantle melting. Nature, 423, 738–741.CrossRefGoogle Scholar
  7. de Jong, K., Wijbrans, J. R., and Féraud, G., 1992. Repeated thermal resetting of phengites during Miocene extension and wrenching in the Betic Cordilleras – evidence from 40Ar/39Ar stepheating and single grain laser probe dating in the Mulhacen complex. Earth and Planetary Science Letters, 110, 173–191.CrossRefGoogle Scholar
  8. Dodson, M. H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259–274.CrossRefGoogle Scholar
  9. Fodor, L. I., Gerdes, A., Dunkl, I., Koroknai, B., Pecskay, Z., Trajanova, M., Horvath, P., Vrabec, M., Jelen, B., Balogh, K., and Frisch, W., 2008. Miocene emplacement and rapid cooling of the Pohorje pluton at the Alpine-Pannonian-Dinaridic junction, Slovenia. Swiss Journal of Geosciences, 101, S255–S271.CrossRefGoogle Scholar
  10. Frey, M., Hunziker, J. C., Franck, W., Bocquet, J., Dal Piaz, G. V., Jager, E., and Niggli, E., 1974. Alpine metamorphism of the Alps. A review. Schweizerische Mineralogische und Petrographische Mitteilingen, 54, 247–291.Google Scholar
  11. Giletti, B. J., 1974a. Diffusion related to geochronology. In Hofmann, A. W., Giletti, B. J., Yoder, H. S., Jr., and Yund, R. A. (eds.), Geochemical Transport and Kinetics. Washington: Carnegie Institution. Carnegie Institution of Washington 634, pp. 61–76.Google Scholar
  12. Giletti, B. J., 1974b. Studies in diffusion I: Argon in phlogopite mica. In Hofmann, A. W., Giletti, B. J., Yoder, H. S., and Yund, R. A. (eds.), Geochemical Transport and Kinetics. Washington: Carnegie Institution. Carnegie Institution of Washington 634, pp. 107–116.Google Scholar
  13. Jäger, E., 1979. Introduction to geochronology. In Jäger, E., and Hunziker, J. C. (eds.), Lectures in Isotope Geology. Berlin: Springer, pp. 1–12.CrossRefGoogle Scholar
  14. Lapen, T. J., Johnson, C. M., Baumgartner, L. P., Mahlen, N. J., Beard, B. L., and Amato, J. M., 2003. Burial rates during prograde metamorphism of an ultra-high-pressure terrane: an example from Lago di Cignana, western Alps, Italy. Earth and Planetary Science Letters, 215, 57–72.CrossRefGoogle Scholar
  15. Lee, J. K. W., 1995. Multipath diffusion in geochronology. Contributions to Mineralogy and Petrology, 120, 60–82.CrossRefGoogle Scholar
  16. Lips, A. L. W., White, S. H., and Wijbrans, J. R., 1998. 40Ar/39Ar laserprobe direct dating of discrete deformational events: continuous record of Early Alpine tectonics in the Pelagonian Zone, NW Aegean area, Greece. Tectonophysics, 298, 133–153.CrossRefGoogle Scholar
  17. Manatschal, G., 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93, 432–466.CrossRefGoogle Scholar
  18. Mussett, A. E., 1969. Diffusion measurements and potassium-argon method of dating. Geophysical Journal of the Royal Astronomical Society, 18, 257–303.CrossRefGoogle Scholar
  19. Rubatto, D., and Hermann, J., 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 67, 2173–2187.CrossRefGoogle Scholar
  20. Scaillet, S., 2002. Excess 40Ar-transport scale and mechanism in high-pressure phengites: a case study from an eclogitized metabasite of the Dora-Maira nappe, western Alps. Geochimica et Cosmochimica Acta, 60, 1075–1090.CrossRefGoogle Scholar
  21. Schoene, B., Schaltegger, U., Brack, P., Latkoczy, C., Stracke, A., and Gunther, D., 2013. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U-Pb TIMS-TEA, Adamello batholith, Italy. Earth and Planetary Science Letters, 355, 162–173.Google Scholar
  22. Warren, C. J., Hanke, F., and Kelley, S. P., 2012. When can muscovite 40Ar/39Ar dating constrain the timing of metamorphic exhumation? Chemical Geology, 291, 79–86.CrossRefGoogle Scholar
  23. Wijbrans, J. R., and McDougall, I., 1986. 40Ar/39Ar dating of white micas from an Alpine high-pressure belt on Naxos (Greece): resetting of the argon isotopic system. Contributions to Mineralogy and Petrology, 93, 187–194.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Earth Sciences, Faculty of Earth and Life SciencesVU UniversityAmsterdamThe Netherlands