Encyclopedia of Scientific Dating Methods

2015 Edition
| Editors: W. Jack Rink, Jeroen W. Thompson

Ar–Ar and K–Ar Dating

  • James K. W. LeeEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-6304-3_40


(Argon–argon): Ar–Ar, 40Ar–39Ar, 40Ar/39Ar, 39Ar–40Ar, 39Ar/40Ar, argon-40/argon-39; (Potassium–argon): K–Ar, 40K–40Ar, 40Ar–40K


Potassium–argon dating. An absolute dating method based on the natural radioactive decay of 40K to 40Ar used to determine the ages of rocks and minerals on geological time scales.

Argon–argon dating. A variant of the K–Ar dating method fundamentally based on the natural radioactive decay of 40K to 40Ar, but which uses an artificially generated isotope of argon (39Ar) (produced through the neutron irradiation of naturally occurring 39K) as a proxy for 40K.

K–Ar dating

The potassium–argon (K–Ar) geochronological method is one of the oldest absolute dating methods and is based upon the occurrence of a radioactive isotope of potassium (40K), which naturally decays to a stable daughter isotope of argon (radiogenic 40Ar, also known as 40Ar*). For this reason, the K–Ar method is one of the few radiometric dating techniques in which the parent (40...

This is a preview of subscription content, log in to check access.


  1. Antón, S. A., and Swisher, C. C., III, 2004. Early dispersal of homo from Africa. Annual Reviews in Anthropology, 33, 271–296.CrossRefGoogle Scholar
  2. Armstrong, P. A., 2005. Thermochronometers in sedimentary basins. Reviews in Mineralogy and Geochemistry, 58, 499–525.CrossRefGoogle Scholar
  3. Begemann, F., Ludwig, K. R., Lugmair, G. W., Min, K., Nyquist, L. E., Patchett, P. J., Renne, P. R., Shih, C.-Y., Villa, I. M., and Walker, R. J., 2001. Call for an improved set of decay constants for geochronological use. Geochimica et Cosmochimica Acta, 65, 111–121.CrossRefGoogle Scholar
  4. Berger, G. W., and York, D., 1981. Geothermometry from 40Ar/39Ar dating experiments. Geochimica et Cosmochimica Acta, 45, 795–811.CrossRefGoogle Scholar
  5. Bissig, T., Clark, A. H., Lee, J. K. W., and Hodgson, C. J., 2002. Miocene landscape evolution in the Chilean flat-slab transect: uplift history and geomorphologic influences on epithermal processes in the El Indio-Pascua Au (–Ag, Cu) belt. Economic Geology, 97, 971–996.CrossRefGoogle Scholar
  6. Camacho, A., Lee, J. K. W., Hensen, B. J., and Braun, J., 2005. Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids. Nature, 435, 1191–1996.CrossRefGoogle Scholar
  7. Dalrymple, G. B., and Lanphere, M. A., 1969. Potassium-Argon dating: principles, techniques, and applications to geochronology. San Francisco: WH Freeman. 258 p.Google Scholar
  8. Dalrymple, G. B., Lanphere, M. A., and Pringle, M. S., 1988. Correlation diagrams in 40Ar/39Ar dating: is there a correct choice? Geophysical Research Letters, 15, 589–591.CrossRefGoogle Scholar
  9. Deino, A., and Potts, R., 1992. Age-probability spectra from examination of single-crystal 40Ar/39Ar dating results: examples from Olorgesailie, Southern Kenya rift. Quaternary International, 13(14), 47–53.CrossRefGoogle Scholar
  10. Deino, A., Renne, P. R., and Swisher, C. C., 1998. 40Ar/39Ar dating in paleoanthropology and archeology. Evolutionary Anthropology, 6, 63–75.CrossRefGoogle Scholar
  11. Dickin, A. P., 2005. Radiogenic isotope geology, 2nd edn. Cambridge: Cambridge University Press, p. 492.CrossRefGoogle Scholar
  12. Dodson, M. H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259–274.CrossRefGoogle Scholar
  13. Dong, H., Hall, C. M., Peacor, D. R., and Halliday, A. N., 1995. Mechanisms of argon retention in clays revealed by laser 40Ar-39Ar dating. Science, 267, 355–359.CrossRefGoogle Scholar
  14. Dong, H., Hall, C. M., Halliday, A. N., and Peacor, D. R., 1997. Laser 40Ar-39Ar dating of microgram-size illite samples and implications for thin-section dating. Geochimica et Cosmochimica Acta, 61, 3803–3808.CrossRefGoogle Scholar
  15. Fitz Gerald, J. D., and Harrison, T. M., 1993. Argon diffusion domains in K-feldspar I: microstructures in MH-10. Contributions to Mineralogy and Petrology, 113, 367–380.CrossRefGoogle Scholar
  16. Fleck, R. J., Sutter, J. F., and Elliot, D. H., 1977. Interpretation of discordant 40Ar/39Ar age spectra of Mesozoic tholeiites from Antarctica. Geochimica et Cosmochimica Acta, 41, 15–32.CrossRefGoogle Scholar
  17. Gaber, L. J., Foland, K. A., and Corbato, C. E., 1988. On the significance of argon release from biotite and amphibole during 40Ar/39Ar vacuum heating. Geochimica et Cosmochimica Acta, 52, 2457–2465.CrossRefGoogle Scholar
  18. Gabunia, L., Vekua, A., Ferring, R., Justus, A., Lordkipanidze, D., Swisher, C. C., III, Tvalchrelidze, M., Antón, S. C., Bosinski, G., de Lumley, M.-A., Majsuradze, G., Mouskhelishvili, A., and Nioradze, M., 2000. Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia, taxonomy, geologic setting and age. Science, 288, 1019–1025.CrossRefGoogle Scholar
  19. Goodman, C., and Evans, R. D., 1941. Age measurements by radioactivity. Geological Society of America Bulletin, 52, 491–544.CrossRefGoogle Scholar
  20. Halliday, A. N., 1978. 40Ar-39Ar stepheating studies of clay concentrates from Irish orebodies. Geochimica et Cosmochimica Acta, 42, 1851–1858.CrossRefGoogle Scholar
  21. Hanes, J. A., York, D., and Hall, C. M., 1985. An 40Ar/39Ar geochronological and electron microprobe investigation of an Archean pyroxenite and its bearing on ancient atmospheric compositions. Canadian Journal of Earth Sciences, 22, 947–958.CrossRefGoogle Scholar
  22. Hodges, K. V., Ruhl, K. W., Wobus, C. W., and Pringle, M. S., 2005. 40Ar/39Ar thermochronology of detrital minerals. Reviews in Mineralogy and Geochemistry, 58, 238–257.CrossRefGoogle Scholar
  23. Huneke, J. C., and Smith, S. P., 1974. The realities of recoil: 39Ar recoil out of small grains and anomalous patterns in 39Ar–40Ar dating. Geochimica et Cosmochimica Acta Supplement, 7(Proceedings of the 7th Lunar Science Conference), 1987–2008.Google Scholar
  24. Jourdan, F., and Renne, P. R., 2007. Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating standard using primary K–Ar standards. Geochimica et Cosmochimica Acta, 71, 387–402.CrossRefGoogle Scholar
  25. Kelley, S., 2002. Excess argon in K–Ar and Ar–Ar geochronology. Chemical Geology, 188, 1–22.CrossRefGoogle Scholar
  26. Kontak, D. J., Horne, R. J., Sandeman, H., Archibald, D., and Lee, J. K. W., 1998. 40Ar/39Ar dating of ribbon-textured veins and adjacent wallrock from the Meguma lode gold deposits: implications for timing and duration of vein formation of slate-belt-hosted vein gold deposits. Canadian Journal of Earth Sciences, 35, 746–761.CrossRefGoogle Scholar
  27. Kramar, N., Cosca, M. A., and Hunziker, J. C., 2001. Heterogeneous 40Ar* distributions in naturally deformed muscovite: in situ UV-laser ablation evidence for microstructurally controlled intragrain diffusion. Earth and Planetary Science Letters, 192, 377–388.CrossRefGoogle Scholar
  28. Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R., 2008. Synchronizing the rock clocks of earth history. Science, 320, 500–504.CrossRefGoogle Scholar
  29. Lanphere, M. A., Champion, D., Melluso, L., Morra, V., Perrotta, A., Scarpati, C., Tedesco, D., and Calvert, A., 2007. 40Ar/39Ar ages of the AD 79 eruption of Vesuvius, Italy. Bulletin of Volcanology, 69, 259–263.CrossRefGoogle Scholar
  30. Leakey, M. G., Feibel, C. S., McDougall, I., Ward, C., and Walker, A., 1995. New four-million-old hominid species from Kanapoi and Allia Bay, Kenya. Nature, 376, 565–571.CrossRefGoogle Scholar
  31. Leakey, M. G., Feibel, C. S., McDougall, I., Ward, C., and Walker, A., 1998. New specimens and confirmation of an early age for Australopithecus anamensis. Nature, 393, 62–66.CrossRefGoogle Scholar
  32. Lee, J. K. W., Onstott, T. C., Cashman, K. V., Cumbest, R. J., and Johnson, D., 1991. Incremental heating of hornblende in vacuo: implications for 40Ar/39Ar geochronology and the interpretation of thermal histories. Geology, 19, 872–876.CrossRefGoogle Scholar
  33. Lo, C. H., and Onstott, T. C., 1989. 39Ar recoil artifacts in chloritized biotite. Geochimica et Cosmochimica Acta, 53, 2697–2711.CrossRefGoogle Scholar
  34. Lo, C. H., Lee, J. K. W., and Onstott, T. C., 2000. Argon release mechanisms of biotite in vacuo and the role of short-circuit diffusion and recoil. Chemical Geology, 165, 135–166.CrossRefGoogle Scholar
  35. Lovera, O. M., Richter, F. M., and Harrison, T. M., 1989. The 40Ar/39Ar geothermometry for slowly cooled samples having a distribution of diffusion domain sizes. Journal of Geophyscial Research, 94, 17917–17935.CrossRefGoogle Scholar
  36. Mark, D. F., Rice, C. M., Lee, M. R., Fallick, A. E., Boyce, A., Trewin, N. H., and Lee, J. K. W., 2010. 40Ar/39Ar dating of hydrothermal activity, biota, and gold mineralization in the Rhynie hot-spring system, Aberdeenshire, Scotland. Geochimica et Cosmochimica Acta, 75, 555–569.CrossRefGoogle Scholar
  37. McDougall, I., and Harrison, T. M., 1999. Geochronology and thermochronology by the40Ar/39Ar method, 2nd edn. New York: Oxford University Press, p. 269.Google Scholar
  38. McIntyre, G. A., Brooks, C., Compston, W., and Turek, A., 1966. The statistical assessment of Rb–Sr isochrons. Journal of Geophysical Research, 71, 5459–5468.CrossRefGoogle Scholar
  39. Merrihue, C., and Turner, G., 1966. Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research, 71, 2852–2857.CrossRefGoogle Scholar
  40. Min, K., Mundil, R., Renne, P. R., and Ludwig, K. R., 2000. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1 Ga rhyolite. Geochimica et Cosmochimica Acta, 64, 73–98.CrossRefGoogle Scholar
  41. Nier, A. O., 1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Physical Review, 77, 789–793.CrossRefGoogle Scholar
  42. Parsons, I., Brown, W. L., and Smith, J. V., 1999. 40Ar/39Ar thermochronology using alkali feldspars: real thermal history or mathematical mirage of microtexture? Contributions to Mineralogy and Petrology, 136, 92–110.CrossRefGoogle Scholar
  43. Parsons, I., Fitz Gerald, J. D., Lee, J. K. W., Ivanic, T., and Golla-Schindler, U., 2010. Time-temperature evolution of microtextures and contained fluids in a plutonic alkali feldspar during heating. Contributions to Mineralogy and Petrology, 160, 155–180.CrossRefGoogle Scholar
  44. Phillips, D., and Onstott, T. C., 1988. Argon isotope zoning in mantle phlogopite. Geology, 16, 542–546.CrossRefGoogle Scholar
  45. Phillips, D., Kiviets, G. B., Barton, E. S., Smith, C. B., Viljoen, K. S., and Fourie L. F., 1999. 40Ar/39Ar dating of kimberlites and related rocks: problems and solutions. In 7th International Kimberlite Conference v2, Red Roof Design, Cape Town, pp 677–688.Google Scholar
  46. Quang, C. X., Clark, A. H., Lee, J. K. W., and Guillén, B. J., 2003. 40Ar–39Ar ages of hypogene and supergene mineralization in the Cerro Verde – Santa Rosa porphyry Cu–Mo cluster, Arequipa, Peru. Economic Geology, 98, 1683–1696.CrossRefGoogle Scholar
  47. Reichow, M. K., Pringle, M. S., Al'Mukhamedov, A. I., Allen, M. B., Andreichev, V. L., Buslov, M. M., Davies, C. E., Fedoseev, G. S., Fitton, J. G., Inger, S., Medvedev, A. Y. A., Mitchell, C., Puchkov, V. N., Safonova, I. Y. U., Scott, R. A., and Saunders, A. D., 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth and Planetary Science Letters, 277, 920.CrossRefGoogle Scholar
  48. Renne, P. R., Sharp, W. D., Deino, A. L., Orsi, G., and Civetta, L., 1997. 40Ar/39Ar Dating into the historical realm: calibration against Pliny the younger. Science, 277, 1279–1280.CrossRefGoogle Scholar
  49. Renne, P. R., Karner, D. B., and Ludwig, K. R., 1998. Absolute ages aren’t exactly. Science, 282, 1840–1841.CrossRefGoogle Scholar
  50. Renne, P. R., Mundil, R., Balco, G., Min, K., and Ludwig, K. R., 2010. Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta, 74, 5349–5367.CrossRefGoogle Scholar
  51. Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell, W. S., Morgan, L. E., Mundil, R., and Smit, J., 2013. Time scales of critical events around the Cretaceous-Paleogene boundary. Science, 339(6120), 684–687.CrossRefGoogle Scholar
  52. Sherlock, R., Lee, J. K. W., and Cousens, B. L., 2004. Geological and geochronological constraints on the timing of mineralization at the Nanisivik zinc-lead Mississippi Valley-type deposit, northern Baffin Island, Nunavut, Canada. Economic Geology, 99, 279–293.CrossRefGoogle Scholar
  53. Sletten, V. W., and Onstott, T. C., 1998. The effect of the instability of muscovite during in vacuo heating on 40Ar/39Ar step-heating spectra. Geochimica Cosmochimica Acta, 62, 123–141.CrossRefGoogle Scholar
  54. Smits, F., and Gentner, W., 1950. Argonbestimmungen an Kalium-Mineralien. I. Bestimmungen an tertiären Kalisalzen. Geochimica et Cosmochimica Acta, 1, 22–27.CrossRefGoogle Scholar
  55. Spell, T. L., and McDougall, I., 1992. Revisions to the age of the Brunhes-matayuma boundary and the Pleistocene geomagnetic polarity timescale. Geophysical Research Letters, 19, 1181–1184.CrossRefGoogle Scholar
  56. Steiger, R. H., and Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.CrossRefGoogle Scholar
  57. Stoenner, R. W., Schaeffer, O. A., and Katcoff, S., 1965. Half-lives of argon-37, argon-39, and argon-42. Science, 148, 1325–1328.CrossRefGoogle Scholar
  58. Swisher, C. C., Curtis, G. H., Jacob, T., Getty, A. G., Suprijo, A., and Widiasmoro, 1994. Age of the earliest known hominids in Java, Indonesia. Science, 263, 1118–1121.Google Scholar
  59. Turner, G., and Cadogan, P. H., 1974. Possible effects of 39Ar recoil in 40Ar–39Ar dating. Geochimica et Cosmochimica Acta Supplement5(Proceedings of the 5th Lunar Science Conference), 1601–1615.Google Scholar
  60. Turner, G., Miller, L. A., and Grasty, R. L., 1966. The thermal history of the Bruderheim meteorite. Earth and Planetary Science Letters, 1, 155–157.CrossRefGoogle Scholar
  61. Villa, I. M., 1997. Direct determination of the 39Ar recoil distance. Geochimica et Cosmochimica Acta, 61, 689–691.CrossRefGoogle Scholar
  62. York, D., 1969. Least-squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters, 5, 320–324.CrossRefGoogle Scholar
  63. York, D., 1984. Cooling histories from Ar/Ar age spectra: implications for Precambrian plate tectonics. Annual Review of Earth and Planetary Sciences, 12, 383–409.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Geological Sciences and Geological EngineeringQueen’s UniversityKingstonCanada
  2. 2.Department of Earth and Planetary SciencesMacquarie UniversitySydneyAustralia