Skip to main content

Thermochronology, Landform Evolution

  • Reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 181 Accesses

Definition

The use of thermochronometers having closure temperatures less than 200 °C that allow evaluation of the timing of geomorphic events or rates of landscape change caused by processes such as uplift, incision, exhumation, erosion, transport, and sedimentation.

Introduction

Continental topography links to some of the most fundamental questions about earth processes and history. Some modern topographic features, such as the Altiplano, Himalaya, or Tarim basin, are among the most striking physical features on the planet. Understanding the timing and processes that created these topographic spectacles would seemly provide profound insight into planetary dynamics. Topography is also central to interactions between a wide range of phenomena, including mantle circulation (e.g., Cazenave et al., 1989; Forte et al., 1993), ocean chemical evolution (e.g., Raymo et al., 1988), biota and biotic evolution (e.g., Dietrich and Perron, 2006), and weather and climate on both local and global...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Braun, J., 2002a. Quantifying the effect of recent relief changes on age-elevation relationships. Earth and Planetary Science Letters, 200, 331–343.

    Article  Google Scholar 

  • Braun, J., 2002b. Estimating exhumation rate and relief evolution by spectral analysis of age-elevation datasets. Terra Nova, 14, 10–214.

    Article  Google Scholar 

  • Braun, J., and Robert, X., 2005. Constraints on the rate of post-orogenic erosional decay from thermochronological data: example from the Dabie Shan, China. Earth Surface Processes and Landforms, 30, 1203–1225.

    Article  Google Scholar 

  • Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Glotzbach, C., Simon-Labric, T., and Prigent, C., 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, 524, 1–28.

    Article  Google Scholar 

  • Cazenave, A., Souriau, A., and Dominh, K., 1989. Global coupling of earth surface topography with hotspots, geoid, and mantle heterogeneities. Nature, 340, 54–57.

    Article  Google Scholar 

  • Clark, M. K., House, M. A., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., and Tang, W., 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33, 525–528.

    Article  Google Scholar 

  • Dietrich, W. E., and Perron, J. T., 2006. The search for a topographic signature of life. Nature, 439, 411–418.

    Article  Google Scholar 

  • Dodson, M. H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259–274.

    Article  Google Scholar 

  • Fitzgerald, P., Sorkhabi, R., Redfield, T., and Stump, E., 1995. Uplift and denudation of the central Alaska Range: a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. Journal of Geophysical Research: Solid Earth, 100, 20175–20191.

    Article  Google Scholar 

  • Forte, A. M., Peltier, W. R., Dziewonski, A. M., and Woodward, R. L., 1993. Dynamic surface topography – a new interpretation based upon mantle flow models derived from seismic tomography. Geophysical Research Letters, 20, 225–228.

    Article  Google Scholar 

  • Glotzbach, C., van der Beek, P., and Spiegel, C., 2011. Episodic exhumation of the Mont Blanc massif, Western Alps: constraints from numerical modelling of thermochronology data. Earth and Planetary Science Letters, 304, 417–430.

    Article  Google Scholar 

  • Herman, F., Braun, J., and Dunlap, W., 2007. Tectono-morphic scenarios in the Southern Alps of New Zealand. Journal of Geophysical Research: Solid Earth, 112, B04201, 25 p. doi:10.1029/2004JB003472.

    Google Scholar 

  • Herman, F., Rhodes, E. J., Braun, J., and Heiniger, L., 2010. Uniform erosion rates and relief amplitude during glacial cycles in the Southern Alps of New Zealand, as revealed from OSL-thermochronology. Earth and Planetary Science Letters, 297, 183–189.

    Article  Google Scholar 

  • House, M. A., Wernicke, B. P., and Farley, K. A., 1998. Dating topography of the Sierra Nevada, California, using apatite (U–Th)/He ages. Nature, 396, 66–69.

    Article  Google Scholar 

  • House, M. A., Wernicke, B. P., and Farley, K. A., 2001. Paleogeomorphology of the Sierra Nevada, California, from (U–Th)/He ages in apatite. American Journal of Science, 301, 77–102.

    Article  Google Scholar 

  • Kirby, E., Reiners, P. W., Krol, M., Hodges, K., Whipplem, K., Farley, K., Tang, W., and Chen, Z., 2002. Late Cenozoic uplift and landscape evolution along the eastern margin of the Tibetan Plateau: inferences from 40Ar/39Ar and (U–Th)/He thermochronology. Tectonics, 21, 20, doi:10.1029/2000TC001246.

    Article  Google Scholar 

  • McPhillips, D., and Brandon, M. T., 2010. Using tracer thermochronology to measure modern relief change in the Sierra Nevada, California. Earth and Planetary Science Letters, 296, 373–383.

    Article  Google Scholar 

  • Molnar, P., and England, P., 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature, 346, 29–34.

    Article  Google Scholar 

  • Raymo, M. E., Ruddiman, W. F., and Froelich, P. N., 1988. Influence of late Cenozoic mountain building on ocean geochemical processes. Geology, 16, 649–653.

    Article  Google Scholar 

  • Ruddiman, W. F., and Kutzbach, J. E., 1989. Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American west. Journal of Geophysical Research: Atmospheres, 94, 18409–18427.

    Article  Google Scholar 

  • Schildgen, T. F., Ehlers, T. A., Whipp, D. M., Jr., van Soest, M. C., Whipple, K. X., and Hodges, K. V., 2009. Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: a thermochronometer and numerical modeling approach. Journal of Geophysical Research, 114, F04014, doi:10.1029/2009JF001305.

    Article  Google Scholar 

  • Shuster, D. L., and Farley, K. A., 2003. 4He/3He thermochronometry. Earth and Planetary Science Letters, 217, 1–17.

    Article  Google Scholar 

  • Shuster, D. L., Cuffey, K. M., Sanders, J. W., and Balco, G., 2011. Thermochronometry reveals headward propagation of erosion in an alpine landscape. Science, 332, 84–88.

    Article  Google Scholar 

  • Stock, G. M., Ehlers, T. A., and Farley, K. A., 2006. Where does sediment come from? Quantifying catchment erosion with detrital apatite (U–Th)/He thermochronometry. Geology, 34, 725–728.

    Article  Google Scholar 

  • Valla, P. G., Shuster, D. L., and van der Beek, P. A., 2011. Significant increase in relief of the European Alps during mid-Pleistocene glaciations. Nature Geoscience, 4, 688–692.

    Article  Google Scholar 

  • van der Beek, P., Valla, P., Herman, F., Braun, J., Persano, C., Dobson, K., and Labrin, E., 2010. Inversion of thermochronological age-elevation profiles to extract independent estimates of denudation and relief history – II: application to the French Western Alps. Earth and Planetary Science Letters, 296, 9–22.

    Article  Google Scholar 

  • Vermeesch, P., 2007. Quantitative geomorphology of the White Mountains (California), using detrital apatite fission track thermochronology. Journal of Geophysical Research: Solid Earth, 112, 3004, 11 p. doi:10.1029/2006JF000671.

    Google Scholar 

  • Wagner, G., and Reimer, G., 1972. Fission-track tectonics: the tectonic interpretation of fission track ages. Earth and Planetary Science Letters, 14, 263–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud Simon-Labric .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Simon-Labric, T. (2015). Thermochronology, Landform Evolution. In: Jack Rink, W., Thompson, J.W. (eds) Encyclopedia of Scientific Dating Methods. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6304-3_190

Download citation

Publish with us

Policies and ethics