Skip to main content

Uranium–Lead, Metamorphic Rocks

  • Reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 130 Accesses

Definition

The word metamorphism derives from the Greek word “metamorphosis,” meaning change of form. Metamorphism is the process by which the mineralogy of rocks is changed as the result of pressure and temperature according to their composition and with the aid of fluid and deformation. Metamorphism is mainly concerned with the changes that take place when rocks are in the solid state, even though melt can be one of the phases present.

Introduction

Dating of metamorphism in general aims to determining the absolute age of stages or phases of metamorphism. It requires dating of a mineral or mineral growth zone that reacted or formed during metamorphism. The age is determined by measuring the U–Th–Pb isotopic composition in the mineral (see Uranium–Lead Dating). The crucial step in dating metamorphism is to relate an absolute date to a metamorphic stage or reaction, ideally identified by specific pressure and temperature values. This step is particularly challenging for U–Pb dating as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Baldwin, S. L., Monteleone, B., Webb, L. E., Fitzgerald, P. G., Grove, M., and Hill, E. J., 2004. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature, 431, 263–267.

    Article  Google Scholar 

  • Cherniak, D. J., 2000. Pb diffusion in rutile. Contributions to Mineralogy and Petrology, 139, 198–207.

    Article  Google Scholar 

  • Degeling, H., Eggins, S., and Ellis, D. J., 2001. Zr budget for metamorphic reactions, and the formation of zircon from garnet breakdown. Journal of Metamorphic Geology, 65, 749–758.

    Google Scholar 

  • Ewing, T., Hermann, J., and Rubatto, D., 2013. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contributions to Mineralogy and Petrology, 165, 757–779.

    Article  Google Scholar 

  • Finger, F., and Krenn, E., 2007. Three metamorphic monazite generations in a high-pressure rocks from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos, 95, 103–115.

    Article  Google Scholar 

  • Friend, C. R. L., and Nutman, A. P., 2005. Complex 3670–3500 Ma orogenic episodes superimposed on juvenile crust accreted between 3850 and 3690 MA, Itsaq Gneiss Complex, southern west Greenland. Journal of Geology, 113, 375–397.

    Article  Google Scholar 

  • Gregory, C., Rubatto, D., Hermann, J., Berger, A., and Engi, M., 2012. Allanite behaviour during incipient melting in the southern Central Alps. Geochimica et Cosmochimica Acta, 84, 433–458.

    Article  Google Scholar 

  • Heinrich, W., Andrehs, G., and Franz, G., 1997. Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. Journal of Metamorphic Geology, 15, 3–16.

    Article  Google Scholar 

  • Hermann, J., and Rubatto, D., 2003. Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology, 21, 833–852.

    Article  Google Scholar 

  • Hoskin, P. W. O., and Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. In Hanchar, J. M., and Hoskin, P. W. O. (eds.), Zircon. Washington, DC: Mineralogical Society of America, pp. 27–62.

    Google Scholar 

  • Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J. O., and Spandler, C., 2008. Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: Implications for allanite-monazite-xenotime phase relations from 250 to 610 °C. Journal of Metamorphic Geology, 26, 509–526.

    Article  Google Scholar 

  • Janots, E., Engi, M., Rubatto, D., Berger, A., and Gregory, C., 2009. Metamorphic rates in collisional orogeny from in situ allanite and monazite dating. Geology, 37, 11–14.

    Article  Google Scholar 

  • Kohn, M. J., and Corrie, S. L., 2011, Preserved Zr–temperatures and U–Pb ages in high–grade metamorphic titanite: Evidence for a static hot channel in the Himalayan orogen: Earth and Planetary Science Letters, v. 311, p. 136-143.

    Article  Google Scholar 

  • Kooijman, E., Mezger, K., and Berndt, J., 2010. Constraints on the U-Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth and Planetary Science Letters, 293, 321–330.

    Article  Google Scholar 

  • Pyle, J. M., Spear, F. S., Rudnick, R. L., and McDonough, W. F., 2001. Monazite-xenotime-garnet equilibrium in metapelites and new monazite-garnet thermometer. Journal of Petrology, 42, 2083–2107.

    Article  Google Scholar 

  • Romer, R. L., 2001. Lead incorporation during crystal growth and the misinterpretation of geochronological data from low-238U/204Pb metamorphic minerals. Terra Nova, 13, 258–263.

    Article  Google Scholar 

  • Rubatto, D., 2002. Zircon trace element geochemistry: distribution coefficients and the link between U-Pb ages and metamorphism. Chemical Geology, 184, 123–138.

    Article  Google Scholar 

  • Rubatto, D., and Hermann, J., 2001. Exhumation as fast as subduction? Geology, 29, 3–6.

    Article  Google Scholar 

  • Rubatto, D., and Hermann, J., 2007. Zircon behaviour in deeply subducted rocks. Elements, 3, 31–35.

    Article  Google Scholar 

  • Rubatto, D., and Scambelluri, M., 2003. U-Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltri Massif, Western Alps). Contributions to Mineralogy and Petrology, 146, 341–355.

    Article  Google Scholar 

  • Rubatto, D., Williams, I. S., and Buick, I. S., 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology, 140, 458–468.

    Article  Google Scholar 

  • Rubatto, D., Hermann, J., Berger, A., and Engi, M., 2009. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps. Contributions to Mineralogy and Petrology, 158, 703–722.

    Article  Google Scholar 

  • Rubatto, D., Chakraborty, S., and Dasgupta, S., 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165, 349–372.

    Article  Google Scholar 

  • Spandler, C., Hermann, J., and Rubatto, D., 2004. Exsolution of thortveitite, yttrialite and xenotime during low temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. American Mineralogist, 89, 1795–1806.

    Article  Google Scholar 

  • Vry, J. K., and Baker, J. A., 2006. LA-MC-ICPMS Pb–Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. Geochimica et Cosmochimica Acta, 70, 1807–1820.

    Article  Google Scholar 

  • Watson, E. B., Wark, D. A., and Thomas, J. B., 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413–433.

    Article  Google Scholar 

  • Xia, Q. X., Zheng, Y. F., Yuan, H., and Wu, F. Y., 2009. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China. Lithos, 112, 477–496.

    Article  Google Scholar 

  • Zack, T., Moraes, R., and Kronz, A., 2004. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148, 471–488.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Rubatto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Rubatto, D. (2015). Uranium–Lead, Metamorphic Rocks. In: Jack Rink, W., Thompson, J.W. (eds) Encyclopedia of Scientific Dating Methods. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6304-3_15

Download citation

Publish with us

Policies and ethics