Management of Snake Envenomation in Taiwan

Living reference work entry

Abstract

There are six venomous snakes of medical importance in Taiwan: three crotalids, Trimeresurus (Viridovipera) stejnegeri, Protobothrops mucrosquamatus, and Deinagkistrodon acutus; one viperid, Daboia russelli siamensis; and two elapids, Naja atra and Bungarus multicinctus. In the prehospital settings, there is no role for incision and suction, electrotherapy, and cryotherapy for snakebite wounds. Routine use of a constriction band or pressure immobilization device is not indicated. The Taiwan government produces four types of equine-derived antivenoms to treat the above-noted snakebites, namely, bivalent antivenom for T. stejnegeri and P. mucrosquamatus, bivalent antivenom for N. atra and B. multicinctus, and two monovalent antivenoms for D. acutus and D. r. siamensis, respectively. These antivenoms are F(ab′)2 fragment in the lyophilized form containing 2,000 units per vial (or at least 1,000 Tanaka units). The Taiwan Poison Control Center formulated a flowchart for the management of six major venomous snakebites based on animal studies, clinical observation, and expert opinion in 1999. The recommended dosage of relevant antivenoms is 1–2 vials for T. stejnegeri snakebites, 2–4 vials for P. mucrosquamatus, 2–4 vials for D. acutus, 2–4 vials for D. r. siamensis, 6–10 vials for N. atra, and 2–4 vials for B. multicinctus. The use of antibiotics is suggested when secondary wound infection has developed, whereas surgical indications include wound necrosis, abscess formation, distal limb gangrenous change, necrotizing fasciitis, or, in rare cases, compartment syndrome. Further studies on the severity assessment (e.g., severity score), risk factors for the development of severe disease, optimal dosing of antivenom, effect of prophylactic antibiotics, and timing of surgery in cases of venomous snakebites in Taiwan are warranted.

Keywords

Compartment Syndrome Necrotizing Fasciitis Snake Species Crude Venom Disseminate Intravascular Coagulopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe T, Alema S, Miledi R. Isolation and characterization of presynaptically acting neurotoxins from the venom of Bungarus snakes. Eur J Biochem. 1977;80:1–12.PubMedCrossRefGoogle Scholar
  2. ACMT, AACT, AAPCC, EAPCC, IST, APAMT. Pressure immobilization after North American Crotalinae snake envenomation. Clin Toxicol (Phila). 2011;49:881–2.CrossRefGoogle Scholar
  3. Aung-Khin M, Ma-Ma K, Zin T. Effects of Russell's viper venom on blood coagulation, platelets and the fibrinolytic enzyme system. Jpn J Med Sci Biol. 1977;30:101–8.PubMedCrossRefGoogle Scholar
  4. Blaylock RS. Antibiotic use and infection in snakebite victims. S Afr Med J. 1999;89:874–6.PubMedGoogle Scholar
  5. Chan JC, Cockram CS, Buckley T, Young K, Kay R, Tomlinson B. Evenoming by Bungarus multicinctus (many-banded krait) in Hong Kong. J Trop Med Hyg. 1995;98:457–60.PubMedGoogle Scholar
  6. Chang KP, Lai CS, Lin SD. Management of poisonous snake bites in southern Taiwan. Kaohsiung J Med Sci. 2007;23:511–8.PubMedCrossRefGoogle Scholar
  7. Chen CM, Wu KG, Chen CJ, Wang CM. Bacterial infection in association with snakebite: a 10-year experience in a northern Taiwan medical center. J Microbiol Immunol Infect. 2011;44:456–60.PubMedCrossRefGoogle Scholar
  8. Chen JB, Leung J, Hsu KT. Acute renal failure after snakebite: a report of four cases. Zhonghua Yi Xue Za Zhi (Taipei). 1997;59:65–9.Google Scholar
  9. Chen JC, Bullard MJ, Chiu TF, Ng CJ, Liaw SJ. Risk of immediate effects from F(ab)2 bivalent antivenin in Taiwan. Wilderness Environ Med. 2000a;11:163–7.PubMedCrossRefGoogle Scholar
  10. Chen JC, Liaw SJ, Bullard MJ, Chiu TF. Treatment of poisonous snakebites in northern Taiwan. J Formos Med Assoc. 2000b;99:135–9.PubMedGoogle Scholar
  11. Chen YC, Chen MH, Wang LM, Wu JJ, Huang CI, Lee CH, Yen DH, Yang CC. Antivenom therapy for crotaline snakebites: has the poison control center provided effective guidelines? J Formos Med Assoc. 2007a;106:1057–62.PubMedCrossRefGoogle Scholar
  12. Chen YC, Chen MH, Yang CC, Chen YW, Wang LM, Huang CI. Trimeresurus stejnegeri envenoming during pregnancy. Am J Trop Med Hyg. 2007b;77:847–9.PubMedGoogle Scholar
  13. Chen YW, Chen MH, Chen YC, Hung DZ, Chen CK, Yen DH, Huang CI, Lee CH, Wang LM, Yang CC. Differences in clinical profiles of patients with Protobothrops mucrosquamatus and Viridovipera stejnegeri envenoming in Taiwan. Am J Trop Med Hyg. 2009;80:28–32.PubMedGoogle Scholar
  14. Cheng HC, Ouyang C. Isolation of coagulant and anticoagulant principles from the venom of Agkistrodon acutus. Toxicon. 1967;4:235–43.PubMedCrossRefGoogle Scholar
  15. Chiappinelli VA. κ-Neurotoxins and α-neurotoxins: effects on neuronal nicotinic acetylcholine receptors. Harley/New York: Snake Toxins/Pergamon Press; 1991. p. 223–58.Google Scholar
  16. Chiou VY. The development of IgY(DeltaFc) antibody based neuro toxin antivenoms and the study on their neutralization efficacies. Clin Toxicol (Phila). 2008;46:539–44.CrossRefGoogle Scholar
  17. Cumpston KL. Is there a role for fasciotomy in Crotalinae envenomations in North America ? Clin Toxicol (Phila). 2011;49:351–65.CrossRefGoogle Scholar
  18. Endo T, Tamiya N. Structure-function relationship of presynaptic neurotoxins from snake venoms. Harley/New York: Snake Toxins/Pergamon Press; 1991. p. 165–222.Google Scholar
  19. Fletcher JE, Jiang MS. Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin. Toxicon. 1993;31:669–95.PubMedCrossRefGoogle Scholar
  20. Fukuyama T, Sawai Y. Local necrosis induced by cobra (Naja naja atra) venom. Jpn J Med Sci Biol. 1972;25:211.PubMedGoogle Scholar
  21. Guderian RH, Mackenzie CD, Williams JF. High voltage shock treatment for snake bite. Lancet. 1986;2:229.PubMedCrossRefGoogle Scholar
  22. Hall EL. Role of surgical intervention in the management of crotaline snake envenomation. Ann Emerg Med. 2001;37:175–80.PubMedCrossRefGoogle Scholar
  23. Hojer J, Tran Hung H, Warrell D. Life-threatening hyponatremia after krait bite envenoming – a new syndrome. Clin Toxicol (Phila). 2010;48:956–7.CrossRefGoogle Scholar
  24. Hsiang GS, Li PX, Yang YJ. Illustrated handbook of Taiwan amphibia and reptiles. Taipei: Owl Publishing Co.; 2009.Google Scholar
  25. Hu SC, Kao WF, Tsai J, Chern CH, Yen D, Lo HC, Lee CH. Analysis of prehospital ALS cases in a rural community. Zhonghua Yi Xue Za Zhi (Taipei). 1996;58:171–6.Google Scholar
  26. Huang CY, Hung DZ, Chen WK. Antivenin-related serum sickness. J Chin Med Assoc. 2010;73:540–2.PubMedCrossRefGoogle Scholar
  27. Huang LW, Wang JD, Huang JA, Hu SY, Wang LM, Tsan YT. Wound infections secondary to snakebites in central Taiwan. J Venom Anim Toxins Incl Tropical Dis. 2012;18:272–6.CrossRefGoogle Scholar
  28. Huang RJ, Chen SW, Chen TK, Liau MY. The detoxification of Naja naja atra venom and preparation of potent antivenin. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1985;18:177–83.PubMedGoogle Scholar
  29. Huang RJ, Liau MY, Chen SW, Chen TK. Preparation of highly potent hemorrhagic antivenin. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1986;37:410–5.Google Scholar
  30. Huang TF, Chang JH, Ouyang C. Characterization of hemorrhagic principles from Trimeresurus gramineus snake venom. Toxicon. 1984;22:45–52.PubMedCrossRefGoogle Scholar
  31. Huang TF, Ouyang C. Action mechanism of the potent platelet aggregation inhibitor from Trimeresurus gramineus snake venom. Thromb Res. 1984;33:125–38.PubMedCrossRefGoogle Scholar
  32. Huang YP, Yu YJ, Hung DZ. Sandwich enzyme-linked immunosorbent assay for Taiwan cobra venom. Vet Hum Toxicol. 2002;44:200–4.PubMedGoogle Scholar
  33. Hung DZ. Taiwan's venomous snakebite: epidemiological, evolution and geographic differences. Trans R Soc Trop Med Hyg. 2004;98:96–101.PubMedCrossRefGoogle Scholar
  34. Hung DZ, Deng JF, Liau MY. The primary management of venomous snakebites on Taiwan. 1999. http://www.pcc.vghtpe.gov.tw/antidote/snake02.htm
  35. Hung DZ, Liau MY, Lin-Shiau SY. The clinical significance of venom detection in patients of cobra snakebite. Toxicon. 2003;41:409–15.PubMedCrossRefGoogle Scholar
  36. Hung DZ, Lin-Shiau SY. Studies on the diagnosis, treatment and toxic mechanism of Taiwan venomous snakebites. Doctoral dissertation, Graduate Institute of Toxicology, College of Medicine, National Taiwan University; 2001.Google Scholar
  37. Hung DZ, Wu ML, Deng JF, Lin-Shiau SY. Russell's viper snakebite in Taiwan: differences from other Asian countries. Toxicon. 2002;40:1291–8.PubMedCrossRefGoogle Scholar
  38. Hung DZ, Wu TC, Deng JF. The painful experience of inappropriate therapy of snake bites: a report of two cases. Zhonghua Yi Xue Za Zhi (Taipei). 1997;60:326–30.Google Scholar
  39. Hung DZ, Yu YJ, Hsu CL, Lin TJ. Antivenom treatment and renal dysfunction in Russell’s viper snakebite in Taiwan: a case series. Trans R Soc Trop Med Hyg. 2006;100:489–94.PubMedCrossRefGoogle Scholar
  40. Kao PH, Lin SR, Chang LS. Differential binding to phospholipid bilayers modulates membrane-damaging activity of Naja naja atra cardiotoxins. Toxicon. 2009a;54:321–8.PubMedCrossRefGoogle Scholar
  41. Kao PH, Lin SR, Wu MJ, Chang LS. Membrane-bound conformation and phospholipid components modulate membrane-damaging activity of Taiwan cobra cardiotoxins. Toxicon. 2009b;53:512–8.PubMedCrossRefGoogle Scholar
  42. Kerrigan KR, Mertz BL, Nelson SJ, Dye JD. Antibiotic prophylaxis for pit viper envenomation: prospective, controlled trial. World J Surg. 1997;21:369–72; discussion 372–363.PubMedCrossRefGoogle Scholar
  43. Ko JH, Chung WH. Serum sickness. Lancet. 2013;381:e1.PubMedCrossRefGoogle Scholar
  44. Kuo TP, Wu CS. Clinico-pathological studies on snakebites in Taiwan. Taiwan Yi Xue Hui Za Zhi. 1972;71:447–66.PubMedGoogle Scholar
  45. Lee CY. Toxicological studies on the venom of Vipera russelli formosensis maki. Part 1. Toxicity and pharmacological properties. J Formos Med Assoc. 1948;47:65–98.Google Scholar
  46. Lee CY. Chapter 2. Mode of action of cobra venom and its purified toxins. Neuropoisons. 1995;1:21–70.Google Scholar
  47. Lee GK, Wu ML, Deng JF, Tsai WJ, Liao HC, Liao SJ. Taiwan cobra (Naja naja atra) injury: cases analysis of poison control center. J Emerg Med ROC. 2000;2:46–58.Google Scholar
  48. Li QB, Yu QS, Huang GW, Tokeshi Y, Nakamura M, Kinjoh K, Kosugi T. Hemostatic disturbances observed in patients with snakebite in south China. Toxicon. 2000;38:1355–66.PubMedCrossRefGoogle Scholar
  49. Li S, Wang J, Zhang X, Ren Y, Wang N, Zhao K, Chen X, Zhao C, Li X, Shao J, Yin J, West MB, Xu N, Liu S. Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochem J. 2004;384:119–27.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lian WC, Yang SL, Guo XY, Jiang ZR. Development of cobra antivenin from the egg yolk of immunized ducks (II). Centers for Disease Control, Taiwan. Development and Research on Science and Technology; 2004.Google Scholar
  51. Liang WJ, Tung YM, Wang HJ. Treatment of snakebite in Taiwan – analysis of 100 cases. J Med Sci. 1992;13:51–6.Google Scholar
  52. Liao WB, Lee CW, Tsai YS, Liu BM, Chung KJ. Influential factors affecting prognosis of snakebite patients management: Kaohsiung Chang Gung Memorial Hospital experience. Chang Gung Med J. 2000;23:577–83.PubMedGoogle Scholar
  53. Liau MY, Fuh TH. Doctoral dissertation: studies on the toxoids and antivenins of Formosan venomous snakes. School of Veterinary Medicine, National Taiwan University; 1991.Google Scholar
  54. Liau MY, Huang RJ. Toxoids and antivenoms of venomous snakes in Taiwan. Toxin Rev. 1997;16:163–75.CrossRefGoogle Scholar
  55. Liau MY, Huang RJ, Chen SW. Enhancement of Naja naja atra antivenin production in horses. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi. 1982;15:294–9.PubMedGoogle Scholar
  56. Lin CS, Chang H, Shyu KG, Liu CY, Lin CC, Hung CR, Chen PH. A method to reduce response times in prehospital care: the motorcycle experience. Am J Emerg Med. 1998;16:711–3.PubMedCrossRefGoogle Scholar
  57. Lin JT, Gopalakrishnakone P, Chou LM. Chaper 16, Venomous snakes of medical importance in Taiwan. Snakes of medical importance (Asia-Pacific region). IST; 1990.Google Scholar
  58. Liu JX, Jiang DX, Lian WC, Liu DP. The epidemiological study of antivenin prescription during 2002–2005 on Taiwan. Yi Qing Bao Dao. 2009;25:466–78.Google Scholar
  59. Mao YC, Yang CC. The clinical manifestations of Taiwan cobra bite and risk factors of severity – 2 medical centers’ experiences. Master thesis, Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang-Ming University; 2013.Google Scholar
  60. Markland Jr FS, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3–18.PubMedCrossRefGoogle Scholar
  61. Maung Maung T, Gopalakrishnakone P, Yuen R, Tan CH. A major lethal factor of the venom of Burmese Russell’s viper (Daboia russelli siamensis): isolation, N-terminal sequencing and biological activities of daboiatoxin. Toxicon. 1995;33:63–76.CrossRefGoogle Scholar
  62. McKinney PE. Out-of-hospital and interhospital management of crotaline snakebite. Ann Emerg Med. 2001;37:168–74.PubMedCrossRefGoogle Scholar
  63. Mitrmoonpitak C, Chulasugandha P, Khow O, Noiprom J, Chaiyabutr N, Sitprija V. Effects of phospholipase A2 and metalloprotease fractions of Russell’s viper venom on cytokines and renal hemodynamics in dogs. Toxicon. 2013;61:47–53.PubMedCrossRefGoogle Scholar
  64. Mori N, Nikai T, Sugihara H. Purification of a proteinase (Ac5-proteinase) and characterization of hemorrhagic toxins from the venom of the hundred-pace snake (Agkistrodon acutus). Toxicon. 1984;22:451–61.PubMedCrossRefGoogle Scholar
  65. Mullins JF, Naylor D. Successful management of cobra bite with cryotherapy. JAMA. 1960;174:1677–9.PubMedCrossRefGoogle Scholar
  66. Otero R, Gutierrez JM, Rojas G, Nunez V, Diaz A, Miranda E, Uribe AF, Silva JF, Ospina JG, Medina Y, Toro MF, Garcia ME, Leon G, Garcia M, Lizano S, De La Torre J, Marquez J, Mena Y, Gonzalez N, Arenas LC, Puzon A, Blanco N, Sierra A, Espinal ME, Lozano R, et al. A randomized blinded clinical trial of two antivenoms, prepared by caprylic acid or ammonium sulphate fractionation of IgG, in Bothrops and Porthidium snake bites in Colombia: correlation between safety and biochemical characteristics of antivenoms. Toxicon. 1999;37:895–908.PubMedCrossRefGoogle Scholar
  67. Ouyang C. The effects of Formosan snake venoms on blood coagulation in vitro. J Formos Med Assoc. 1957;56:19–32.Google Scholar
  68. Ouyang C, Huang TF. A potent platelet aggregation inducer from Trimeresurus gramineus snake venom. Biochim Biophys Acta. 1983a;761:126–34.PubMedCrossRefGoogle Scholar
  69. Ouyang C, Huang TF. Potent platelet aggregation inhibitor from Trimeresurus gramineus snake venom. Biochim Biophys Acta. 1983b;757:332–41.PubMedCrossRefGoogle Scholar
  70. Ouyang C, Huang TF. Platelet aggregation inhibitors from Agkistrodon acutus snake venom. Toxicon. 1986;24:1099–106.PubMedCrossRefGoogle Scholar
  71. Ouyang C, Teng CM. The effect of the purified anticoagulant principle of Agkistrodon acutus venom on blood coagulation. Toxicon. 1973;11:287–92.PubMedCrossRefGoogle Scholar
  72. Ouyang C, Teng CM. The effects of the purified thrombin-like and anticoagulant principles of Agkistrodon acutus venom on blood coagulation in vivo. Toxicon. 1976;14:49–54.PubMedCrossRefGoogle Scholar
  73. Ouyang C, Teng CM. The effect of Trimeresurus mucrosquamatus snake venom on platelet aggregation. Toxicon. 1978;16:575–82.PubMedCrossRefGoogle Scholar
  74. Ouyang C, Teng CM, Hong JS. Purification and properties of the coagulant and anticoagulant principles of Agkistrodon acutus venom. J Formos Med Assoc. 1972;71:401–7.Google Scholar
  75. Ouyang C, Teng CM, Huang TF. Characterization of the purified principles of Formosan snake venoms which affect blood coagulation and platelet aggregation. Taiwan Yi Xue Hui Za Zhi. 1982a;81:781–90.PubMedGoogle Scholar
  76. Ouyang C, Teng CM, Huang TF. Characterization of the purified principles of Formosan snake venoms which affect blood coagulation and platelet aggregation. J Formos Med Assoc. 1982b;81:781–90.Google Scholar
  77. Ouyang C, Yang FY. Purification and properties of the thrombin-like enzyme from Trimeresurus gramineus venom. Biochim Biophys Acta. 1974;351:354–63.PubMedCrossRefGoogle Scholar
  78. Ouyang C, Yang FY. Purification and properties of the anticoagulant principle of Trimeresurus gramineus venom. Biochim Biophys Acta. 1975;386:479–92.PubMedCrossRefGoogle Scholar
  79. Panfoli I, Ravera S, Calzia D, Dazzi E, Gandolfo S, Pepe IM, Morelli A. Inactivation of phospholipase A2 and metalloproteinase from Crotalus atrox venom by direct current. J Biochem Mol Toxicol. 2007;21:7–12.PubMedCrossRefGoogle Scholar
  80. Pe T, Myint T, Htut A, Htut T, Myint AA, Aung NN. Envenoming by Chinese krait (Bungarus multicinctus) and banded krait (B. fasciatus) in Myanmar. Trans R Soc Trop Med Hyg. 1997;91:686–8.PubMedCrossRefGoogle Scholar
  81. Pearn J, Morrison J, Charles N, Muir V. First-aid for snake-bite: efficacy of a constrictive bandage with limb immobilization in the management of human envenomation. Med J Aust. 1981;2:293–5.PubMedGoogle Scholar
  82. Risch M, Georgieva D, von Bergen M, Jehmlich N, Genov N, Arni RK, Betzel C. Snake venomics of the Siamese Russell’s viper (Daboia russelli siamensis) – relation to pharmacological activities. J Proteomics. 2009;72:256–69.PubMedCrossRefGoogle Scholar
  83. Rowen EG. What does beta-bungarotoxin do at the neuromuscular junction? Toxicon. 2001;39:107–18.CrossRefGoogle Scholar
  84. Sawai Y, Tseng CS. Snakebites on Taiwan. Snake. 1969;1:9–18.Google Scholar
  85. Seifert S, White J, Currie BJ. Pressure bandaging for North American snake bite? No! Clin Toxicol (Phila). 2011;49:883–5.CrossRefGoogle Scholar
  86. Shen MC. Afibrinogenemia and thrombocytopenia following crotalid snake bites in Taiwan. Taiwan Yi Xue Hui Za Zhi. 1983;82:239–44.PubMedGoogle Scholar
  87. Shih YC, Ma H, Yeh FL, Lin JT, Hwang CH, Wang MS, Perng CK, Shen BH, Chen CH. Risk factors of surgical intervention in the management of venomous snakebite in Taiwan. J Plast Surg Assoc ROC. 2006;15:367–76.Google Scholar
  88. Suntravat M, Yusuksawad M, Sereemaspun A, Perez JC, Nuchprayoon I. Effect of purified Russell’s viper venom-factor X activator (RVV-X) on renal hemodynamics, renal functions, and coagulopathy in rats. Toxicon. 2011;58:230–8.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Suwansrinon K, Khow O, Mitmoonpitak C, Daviratanasilpa S, Chaiyabutr N, Sitprija V. Effects of Russell’s viper venom fractions on systemic and renal hemodynamics. Toxicon. 2007;49:82–8.PubMedCrossRefGoogle Scholar
  90. To S. Statistical studies of poisonous snakebites in Formosan. J Formos Med Assoc. 1941;40:1052–477; 1795–1824.Google Scholar
  91. Tu MC. Amazing snakes. Yuang-Liou Publishing; 2008.Google Scholar
  92. Wang JD, Tsan YT, Mao YC, Wang LM. Venomous snakebites and antivenom treatment according to a protocol for pediatric patients in Taiwan. J Venom Anim Toxins Incl Trop Dis. 2009;15:667–79.CrossRefGoogle Scholar
  93. Wang YM, Lu PJ, Ho CL, Tsai IH. Characterization and molecular cloning of neurotoxic phospholipases A2 from Taiwan viper (Vipera russelli formosensis). Eur J Biochem. 1992;209:635–41.PubMedCrossRefGoogle Scholar
  94. Warrell DA. Snake venoms in science and clinical medicine. 1. Russell’s viper: biology, venom and treatment of bites. Trans R Soc Trop Med Hyg. 1989;83:732–40.PubMedCrossRefGoogle Scholar
  95. Warrell DA. Guidelines for the clinical management of snake-bites. World Health Organization. Regional Office for South-East Asia; 2010. P. 1–151.Google Scholar
  96. White J. Snake venoms and coagulopathy. Toxicon. 2005;45:951–67.PubMedCrossRefGoogle Scholar
  97. Wuster W, Golay P, Warrell DA. Synopsis of recent developments in venomous snake systematics. Toxicon. 1997;35:319–40.PubMedCrossRefGoogle Scholar
  98. Xu X, Wang C, Liu J, Lu Z. Purification and characterization of hemorrhagic components from Agkistrodon acutus (hundred pace snake) venom. Toxicon. 1981;19:633–44.PubMedCrossRefGoogle Scholar
  99. Zhao JC, Rao DS. 111 cases of snake-bite (Agkistrodon acutus guenther) treated by combined traditional Chinese and Western medicine. J Tradit Chin Med. 1982;2:119–23.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Division of Clinical Toxicology, Department of Emergency MedicineTaichung Veterans General HospitalTaichungTaiwan, Republic of China
  2. 2.Division of Clinical Toxicology and Occupational Medicine, Department of MedicineTaipei Veterans General HospitalTaichungTaiwan, Republic of China
  3. 3.Institute of Environmental and Occupational Health Sciences, School of MedicineNational Yang-Ming UniversityTaichungTaiwan, Republic of China
  4. 4.Division of Toxicology, Trauma and Emergency CenterChina Medical University HospitalTaichungTaiwan, Republic of China
  5. 5.Graduate Institute of Clinical Medical ScienceChina Medical UniversityTaichungTaiwan, Republic of China

Personalised recommendations