Skip to main content

Marine Evaporites

  • Reference work entry
  • First Online:
  • 140 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Marine evaporites form by extreme evaporation of seawater either directly in an open-water environment with restricted circulation or diagenetically from sediment pore waters.

Introduction

Geology hangs its interpretive powers on the principal of uniformitarianism, i.e., the present is the key to the past. Unfortunately for marine evaporates, there is no present example for the thick, aerially extensive ancient evaporite deposits (“saline giants”). That would require a large, deep basin with a marine connection but with restricted circulation, and a huge influx of seawater for a long time. The marine connection could be surface water or marine-fed groundwater. It would also require a warm climate with extreme net evaporation that existed for a long time. The Quaternary is not a good analog for the extent and distribution of climates that existed throughout most of the Phanerozoic because during the Quaternary the world was in an icehouse mode. However, during most of the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Adams, J. E., 1944. Upper Permian Ochoan series of Delaware Basin, west Texas and southeastern New Mexico. American Association of Petroleum Geologists Bulletin, 28, 1592–1625.

    Google Scholar 

  • Alsharhan, A. S., and Kendall, C. G. S. C., 2003. Holocene coastal carbonates and evaporates of the southern Arabian Gulf and their ancient analogues. Earth-Science Reviews, 61, 191–243.

    Article  Google Scholar 

  • Anderson, R. Y., 2011. Enhanced climate variability in the tropics: a 200,000 yr annual record of monsoon variability from Pangea’s equator. Climate of the Past, 7, 757–770.

    Article  Google Scholar 

  • Anderson, R. Y., and Dean, W. E., 1995. Filling the Delaware Basin: hydrologic and climatic controls on the Upper Permian Castile Formation varved evaporite. In Scholle, P. A., Peryt, T. M., and Ulmer-Scholl, D. S. (eds.), The Permian of Northern Pangea. Berlin: Springer. Sedimentary Basins and Economic Resources, Vol. 2, pp. 61–78.

    Chapter  Google Scholar 

  • Anderson, R. Y., and Kirkland, D. W., 1966. Intrabasin varve correlation. Geological Society of America Bulletin, 77, 241–256.

    Article  Google Scholar 

  • Anderson, R. Y., Dean, W. E., Kirkland, D. W., and Snider, H. I., 1972. Permian Castile varved evaporite sequence, West Texas and New Mexico. Geological Society of America Bulletin, 83, 59–86.

    Article  Google Scholar 

  • Barker, J. M., and Austin, G. S., 1993. Economic geology of the Carlsbad potash district, New Mexico. New Mexico Geological Society Guidebook, 44th Field Conference, Carlsbad Region, New Mexico and West Texas, 1993. pp. 283–291.

    Google Scholar 

  • Borchert, H., and Muir, R. O., 1964. Salt Deposits, The Origin, Metamorphism and Deformation of Evaporites. London: D. Van Nostrand.

    Google Scholar 

  • Butler, G. P., 1969. Modern evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf. Journal of Sedimentary Petrology, 39, 70–89.

    Google Scholar 

  • Clarke, F. W., 1924. The Data of Geochemistry, 5th edn. U. S. Geological Survey Bulletin, Vol. 770, p. 841.

    Google Scholar 

  • Dean, W. E., Davies, G. R., and Anderson, R. Y., 1975. Sedimentological significance of nodular and laminated anhydrite. Geology, 3, 367–372.

    Article  Google Scholar 

  • Eugster, H. P., 1971. The beginnings of experimental petrology. Science, 173, 481–489.

    Article  Google Scholar 

  • Garrison, R. E., Schreiber, B. C., Bernoilli, D., Fabricus, F. H., Kidd, R. B., and Méliers, F., 1978. In Hsü, K. J., Montadert, L., et al. (eds.), Initial Reports of the Deep Sea Drilling Project. Washington, DC: U.S. Government Printing Office, Vol. 42, Part 1, pp. 4571–4612.

    Google Scholar 

  • Hardie, L. A., and Lowenstein, T. K., 2004. Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A cores. Journal of Sedimentary Petrology, 74, 453–461.

    Article  Google Scholar 

  • Hay, W. W., Migdisov, A., Balukhovsky, A. N., Wold, C. N., Flögel, S., and Söding, E., 2006. Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate, ocean circulation and life. Palaeogeography, Palaeoclimatology, and Palaeoecology, 240, 3–46.

    Article  Google Scholar 

  • Hsü, K. J., Ryan, W. B. F., and Cita, M. B., 1973. Late Miocene desiccation of the Mediterranean. Nature, 24(240), 244.

    Google Scholar 

  • Hsü, K. J., Montadert, L., Bernoulli, D., Cita, M. B., Erickson, A., Garrison, R. E., Kidd, R. B., Méliéres, F., Müller, C., and Wright, R., 1978. History of the Mediterranean salinity crisis. In Hsü, K. J., Montadert, L., et al. (eds.), Initial Reports of the Deep Sea Drilling Project. Washington, DC: U.S. Government Printing Office, Vol. 42, Part 1, pp. 1053–1068.

    Google Scholar 

  • Kidd, R. B., Bernoulli, D., Garrison, R. E., Fabricus, F. H., and Méliéres, F., 1978. Lithologic findings of DSDP Leg 42A, Mediterranean Sea. In Hsü, K. J., Montedert, L., et al. (eds.), Initial Reports of the Deep Sea Drilling Project. Washington, DC: U.S. Government Printing Office, Vol. 42, Part 1, pp. 1079–1094.

    Google Scholar 

  • King, R. H., 1947. Sedimentation in the Permian Castile sea. American Association of Petroleum Geologists Bulletin, 31, 470–477.

    Google Scholar 

  • Kinsman, D. J. J., 1966. Gypsum and anhydrite of Recent age, Persian Gulf. In Second Symposium on Salt. Cleveland: Northern Ohio Geological Society, pp. 302–326.

    Google Scholar 

  • Kinsman, D. J. J., 1969. Modes of formation, sedimentary associations, and diagnostic features of shallow-water and supratidal evaporites. American Association of Petroleum Geologists Bulletin, 53, 830–840.

    Google Scholar 

  • Kirkland, D. W., 2003. An explanation for the varves of the Castile evaporates (Upper Permian), Texas and New Mexico, USA. Sedimentology, 50, 899–920.

    Article  Google Scholar 

  • Kirkland, D. W., and Evans, R. (eds.), 1973. Marine Evaporites: Origin, Diagenesis, and Geochemistry. Stroudsburg: Dowden, Hutchinson, and Ross. Benchmark Papers in Geology.

    Google Scholar 

  • Lowenstein, T. K., 1988. Origin of depositional cycles in a Permian “saline giant”: the Salado (McNutt zone) evaporates of New Mexico and Texas. Geological Society of America Bulletin, 100, 592–608.

    Article  Google Scholar 

  • Masson, P. H., 1955. An occurrence of gypsum in southwest Texas. Journal of Sedimentary Petrology, 25, 72–79.

    Article  Google Scholar 

  • Miller, A. R., Densmore, C. D., Degens, E. T., Hathaway, J. C., Manheim, F. T., McFarlin, P. F., Pocklington, R., and Jokela, A., 1966. Hot brines and recent iron deposits in deeps of the Red Sea. Geochimica et Cosmochimica Acta, 30, 341–359.

    Article  Google Scholar 

  • Moiola, R. J., and Glover, E. D., 1965. Recent anhydrite from Clayton Playa, Nevada. American Mineralogist, 50, 2063–2069.

    Google Scholar 

  • Morris, R. C., and Dickey, P. A., 1957. Modern evaporite deposition in Peru. American Association of Petroleum Geologists Bulletin, 41, 2467–2474.

    Google Scholar 

  • Ochsenius, K., 1888. On the formation of rock salt and mother liquor salts. Philadelphia Academic Society Proceedings, Part 2, 181–187.

    Google Scholar 

  • Richter-Bernburg, G., 1957. Isochrone Warven im Anhydrite des Zechstein 2: Germany, Geol. Landesanst. Geol. Jb. Bd., 74, 601–610.

    Google Scholar 

  • Rouchy, J. M., and Caruso, A., 2006. The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sedimentary Geology, 188–189, 35–67.

    Article  Google Scholar 

  • Rouchy, J. M., Suc, J. P., Ferrandini, J., and Ferrandini, M., 2006. The Messinian salinity crisis revisited. Editorial. Sedimentary Geology, 188–189, 1–8.

    Article  Google Scholar 

  • Ryan, W. B. F., 2009. Decoding the Mediterranean salinity crisis. Sedimentology, 56, 95–136.

    Article  Google Scholar 

  • Ryan, W. B. F., Hsü, K. J., et al., 1973. Initial Reports of the Deep Sea Drilling Project. Washington, DC: U.S. Government Printing Office, Vol. 13, Parts 1 and 2, p. 1447.

    Google Scholar 

  • Schreiber, B. C., and El Tabakht, M., 2000. Deposition and early alteration of evaporates. Sedimentology, 47, 215–238.

    Article  Google Scholar 

  • Schreiber, B. C., Friedman, G. M., Decima. A., and Schreiber, E., 1976. Depositional environments of Upper Miocene (Messinian) evaporite deposits of the Sicilian Basin. Sedimentology, 23, 729–760.*

    Google Scholar 

  • Scruton, P. C., 1953. Deposition of evaporates. American Association of Petroleum Geologists, 37, 2498–2512.

    Google Scholar 

  • Shearman, D. J., 1966. Origin of marine evaporites by diagenesis. Institute of Mining and Metallurgy Transactions, Section B, 75, 208–215.

    Google Scholar 

  • Stoffers, P., and Ross, D. A., 1974. Sediment history of the Red Sea. In Whitmarsh, R. B., Weser, O. E., Ross, D. A., et al. (eds.), Initial Reports of the Deep Sea Drilling Project. Washington, DC: U.S. Government Printing Office, Vol. 23, pp. 849–865.

    Google Scholar 

  • Usiglio, J., 1849. Analyse de L’eau de la Mediterranee sur les cotes de France. Annalen der Chemie, 27(92–107), 172–191.

    Google Scholar 

  • Warren, J. K., 2006. Evaporites: Sediments, Resources and Hydrocarbons. Berlin: Springer.

    Book  Google Scholar 

  • Warren, J. K., 2010. Evaporites through time: tectonic, climatic, and eustatic controls on marine and nonmarine deposits. Earth-Science Reviews, 98, 217–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter E. Dean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Dean, W.E. (2016). Marine Evaporites. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6238-1_188

Download citation

Publish with us

Policies and ethics