Skip to main content

Nanostructured Thermoelectric Materials

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Nanotechnology
  • 186 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nolas, G.S., Sharp, J., Goldsmid, H.J.: Thermoelectrics Basic Principles and New Materials Developments. Springer, Berlin/Heidelberg (2001)

    Google Scholar 

  2. He, J., Tritt, T.M.: Thermal-to-electrical energy conversion from the nanotechnology perspective. In: Garcia-Martinez, J. (ed.) Nanotechnology for the Energy Challenge, pp. 47–78. Wiley-VCH, Weinheim (2010)

    Chapter  Google Scholar 

  3. Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.G.: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)

    Article  Google Scholar 

  4. Chiritescu, C., Cahill, D.G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., Zschack, P.: Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007)

    Article  Google Scholar 

  5. Mahan, G.D.: Thermionic refrigeration. J. Appl. Phys. 76, 4362–4366 (1994)

    Article  Google Scholar 

  6. Cutler, M., Mott, N.F.: Observation of Anderson localization in an electron gas. Phys. Rev. 181, 1336–1340 (1969)

    Article  Google Scholar 

  7. Irkhin, V.Y., Irkhin, Y.P.: Electronic Structure, Correlated Effects and Physical Properties of d- and f-Metals and Their Compounds. Cambridge International Science Publishing, Cambridge, UK (2007)

    Google Scholar 

  8. Nag, B.R.: Electron Transport in Compound Semiconductors. Springer, Berlin/Heidelberg (1980)

    Book  Google Scholar 

  9. Heremans, J.P., Thrush, C.M., Morelli, D.T.: Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70, 115334 (2004)

    Article  Google Scholar 

  10. (a) Zabarjadi, M., Joshi, G., Zhu, G.H., Yu, B., Minnich, A., Lan, Y.C., Wang, X.W., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 11, 2225–2230 (2011); (b) Yu, B., Zebarjadi, M., Wang, H., Lukas, K., Wang, H.Z., Wang, D.Z., Opeil, C., Dresselhaus, M.S., Chen, G., Ren, Z.F.: Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett. 12, 2077–2082 (2012)

    Google Scholar 

  11. Heremans, J.P.: The effect of resonant energy levels on the thermoelectric power and thermoelectric power factor. In: Rowe, D.M. (ed.) CRC Handbook of Thermoelectrics, pp. 12–1. CRC Press, Boca Raton (2012)

    Google Scholar 

  12. Sakurai, J.J.: Modern Quantum Mechanics, Section 7.8, revised edition. Prentice Hall. Upper Saddle River, New Jersey, USA (1994)

    Google Scholar 

  13. Zebarjadi, M., Liao, B., Esfarjani, K., Dresselhaus, M., Chen, G.: Enhancing the thermoelectric power factor by using invisible dopants. Adv. Mater. 25, 1577–1582 (2013)

    Article  Google Scholar 

  14. Makongo, J.P.A., Misra, D.K., Zhou, X., Pant, A., Shabetai, M.R., Su, X., Uher, C., Stokes, K.L., Poudeu, P.F.P.: Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. J. Am. Chem. Soc. 133, 18843–18852 (2011)

    Article  Google Scholar 

  15. Xie, W., Yan, Y., Zhu, S., Zhou, M., Populoh, S., Gałązka, K., Poon, S.J., Weidenkaff, A., He, J., Tang, X., Tritt, T.M.: Significant ZT enhancement in p-type Ti(Co, Fe)Sb-InSb nanocomposites via a synergistic high mobility electron injection, energy filtering and boundary scattering approach. Acta Mater. 61, 2087–2094 (2013)

    Article  Google Scholar 

  16. Tan, G.J., Wang, S.Y., Li, H., Yan, Y.G., Tang, X.F.: Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4-xZnxSb12. J. Solid State Chem. 187, 316–322 (2012)

    Article  Google Scholar 

  17. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 320, 634–638 (2008)

    Google Scholar 

  18. Puneet, P., Podila, R., Karakaya, M., Zhu, S., He, J., Tritt, T.M., Dresselhaus, M.S., Rao, A.M.: Preferential scattering by interfacial charged defects for enhanced thermoelectric performance in few-layered n-type Bi2Te3. Sci. Rep. 3, 3212 (2013)

    Article  Google Scholar 

  19. Zhao, L., Hao, S., Lo, S.H., Wu, C.I., Zhou, X., Lee, Y., Li, H., Biswas, K., Hogan, T.P., Uher, C., Wolverton, C., Draivd, V.P., Kanatzidis, M.G.: High thermoelectric performance via hierarchical compositionally alloyed nanostructures. J. Am. Chem. Soc. 135, 7364–7370 (2013)

    Article  Google Scholar 

  20. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D., Ren, Z.F., Fleurial, J.P., Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Liu, Y., He, J. (2015). Nanostructured Thermoelectric Materials. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_59-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_59-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics