Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nanostructured Thermoelectric Materials

  • Yufei Liu
  • Jian He
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_59-2



Nanostructured thermoelectric materials are materials that contain nanoscale constituents and exhibit enhanced thermoelectric performance due to nanoscale phenomena.


Electricity and heat are two important forms of energy; electricity remains the most convenient form of energy, while heat is an abundant but low-grade form of energy. As the simplest technology applicable to direct heat–electricity energy conversion, thermoelectricity is secured a position in the solution package of sustainable and alternative energy for mankind in the twenty-first century [1]. The study of thermoelectrics is an application-driven material-oriented fundamental research; the ultimate goal is to develop higher performance thermoelectric material for applications in power generation and heat management. The thermoelectric performance of a material is gauged by its figure of merit, ZT with \( ZT=\frac{\sigma...


Seebeck Coefficient Thermoelectric Material Lattice Thermal Conductivity Resonant Scattering Phase Angle Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Nolas, G.S., Sharp, J., Goldsmid, H.J.: Thermoelectrics Basic Principles and New Materials Developments. Springer, Berlin/Heidelberg (2001)Google Scholar
  2. 2.
    He, J., Tritt, T.M.: Thermal-to-electrical energy conversion from the nanotechnology perspective. In: Garcia-Martinez, J. (ed.) Nanotechnology for the Energy Challenge, pp. 47–78. Wiley-VCH, Weinheim (2010)CrossRefGoogle Scholar
  3. 3.
    Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.G.: Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010)CrossRefGoogle Scholar
  4. 4.
    Chiritescu, C., Cahill, D.G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., Zschack, P.: Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007)CrossRefGoogle Scholar
  5. 5.
    Mahan, G.D.: Thermionic refrigeration. J. Appl. Phys. 76, 4362–4366 (1994)CrossRefGoogle Scholar
  6. 6.
    Cutler, M., Mott, N.F.: Observation of Anderson localization in an electron gas. Phys. Rev. 181, 1336–1340 (1969)CrossRefGoogle Scholar
  7. 7.
    Irkhin, V.Y., Irkhin, Y.P.: Electronic Structure, Correlated Effects and Physical Properties of d- and f-Metals and Their Compounds. Cambridge International Science Publishing, Cambridge, UK (2007)Google Scholar
  8. 8.
    Nag, B.R.: Electron Transport in Compound Semiconductors. Springer, Berlin/Heidelberg (1980)CrossRefGoogle Scholar
  9. 9.
    Heremans, J.P., Thrush, C.M., Morelli, D.T.: Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70, 115334 (2004)CrossRefGoogle Scholar
  10. 10.
    (a) Zabarjadi, M., Joshi, G., Zhu, G.H., Yu, B., Minnich, A., Lan, Y.C., Wang, X.W., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Power factor enhancement by modulation doping in bulk nanocomposites. Nano Lett. 11, 2225–2230 (2011); (b) Yu, B., Zebarjadi, M., Wang, H., Lukas, K., Wang, H.Z., Wang, D.Z., Opeil, C., Dresselhaus, M.S., Chen, G., Ren, Z.F.: Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett. 12, 2077–2082 (2012)Google Scholar
  11. 11.
    Heremans, J.P.: The effect of resonant energy levels on the thermoelectric power and thermoelectric power factor. In: Rowe, D.M. (ed.) CRC Handbook of Thermoelectrics, pp. 12–1. CRC Press, Boca Raton (2012)Google Scholar
  12. 12.
    Sakurai, J.J.: Modern Quantum Mechanics, Section 7.8, revised edition. Prentice Hall. Upper Saddle River, New Jersey, USA (1994)Google Scholar
  13. 13.
    Zebarjadi, M., Liao, B., Esfarjani, K., Dresselhaus, M., Chen, G.: Enhancing the thermoelectric power factor by using invisible dopants. Adv. Mater. 25, 1577–1582 (2013)CrossRefGoogle Scholar
  14. 14.
    Makongo, J.P.A., Misra, D.K., Zhou, X., Pant, A., Shabetai, M.R., Su, X., Uher, C., Stokes, K.L., Poudeu, P.F.P.: Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. J. Am. Chem. Soc. 133, 18843–18852 (2011)CrossRefGoogle Scholar
  15. 15.
    Xie, W., Yan, Y., Zhu, S., Zhou, M., Populoh, S., Gałązka, K., Poon, S.J., Weidenkaff, A., He, J., Tang, X., Tritt, T.M.: Significant ZT enhancement in p-type Ti(Co, Fe)Sb-InSb nanocomposites via a synergistic high mobility electron injection, energy filtering and boundary scattering approach. Acta Mater. 61, 2087–2094 (2013)CrossRefGoogle Scholar
  16. 16.
    Tan, G.J., Wang, S.Y., Li, H., Yan, Y.G., Tang, X.F.: Enhanced thermoelectric performance in zinc substituted p-type filled skutterudites CeFe4-xZnxSb12. J. Solid State Chem. 187, 316–322 (2012)CrossRefGoogle Scholar
  17. 17.
    Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 320, 634–638 (2008)Google Scholar
  18. 18.
    Puneet, P., Podila, R., Karakaya, M., Zhu, S., He, J., Tritt, T.M., Dresselhaus, M.S., Rao, A.M.: Preferential scattering by interfacial charged defects for enhanced thermoelectric performance in few-layered n-type Bi2Te3. Sci. Rep. 3, 3212 (2013)CrossRefGoogle Scholar
  19. 19.
    Zhao, L., Hao, S., Lo, S.H., Wu, C.I., Zhou, X., Lee, Y., Li, H., Biswas, K., Hogan, T.P., Uher, C., Wolverton, C., Draivd, V.P., Kanatzidis, M.G.: High thermoelectric performance via hierarchical compositionally alloyed nanostructures. J. Am. Chem. Soc. 135, 7364–7370 (2013)CrossRefGoogle Scholar
  20. 20.
    Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D., Ren, Z.F., Fleurial, J.P., Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyClemson UniversityClemsonUSA