Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Synthesis of Carbon Nanotubes

  • Simon J. HenleyEmail author
  • José V. Anguita
  • S. Ravi P. Silva
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_54-2

Synonyms

Definition

Carbon nanotubes (CNTs) are allotropes of graphitic carbon with a cylindrical structure and diameters of <100 nm. A CNT can consist of one or many concentric graphene sheets rolled up as cylinders. CNTs are of interest for a wide variety of technological applications. In this entry, the various experimental methods to synthesize carbon nanotubes are introduced.

Introduction

Carbon nanotubes (CNTs) were first brought to worldwide attention by Iijima in 1991 [1] after he analyzed, by electron microscopy, the samples produced during an electrical arc discharge between carbon rods held in a helium atmosphere. He observed nanoscale hollow tubes, similar to those seen by Russian researchers in the 1950s [2]. Carbon nanotubes can be visualized as graphene sheets rolled up to form tubes; if one sheet is rolled up, a single-walled carbon nanotube (SWCNT) is formed. The structures formed when two or more concentric tubes are present...

Keywords

Carbon Nanotubes Chemical Vapor Deposition Chemical Vapor Deposition Process Catalyst Nanoparticles Molybdenum Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991)CrossRefGoogle Scholar
  2. 2.
    Radushkevich, L.V., Lukyanovich, V.M.: Zurn. Fisic. Chim. 26, 88 (1952)Google Scholar
  3. 3.
    Harris, P.F.: Carbon Nanotube Science: Synthesis, Properties and Applications, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  4. 4.
    Ebbesen, T.W. (ed.): Carbon Nanotubes, Preparation and Properties. CRC Press, Boca Raton (1996)Google Scholar
  5. 5.
    Saito, R., Dresselhaus, G., Dresselhaus, M.S. (eds.): Physical Properties of Carbon Nanotubes. World Scientific, Singapore (1998)Google Scholar
  6. 6.
    Ebbesen, T.W.: Carbon nanotubes. Annu. Rev. Mater. Sci. 24, 235 (1994)CrossRefGoogle Scholar
  7. 7.
    Guo, T., Nikolaev, P., Rinzler, A.G., Tomanek, D., Colbert, D.T., Smalley, R.E.: Self-assembly of tubular fullerenes. Phys. Chem. 99, 10694–10697 (1995)CrossRefGoogle Scholar
  8. 8.
    Kumar, M., Ando, Y.: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010)CrossRefGoogle Scholar
  9. 9.
    Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (eds.): Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Topics in Applied Physics, vol. 80. Springer, Berlin (2001)Google Scholar
  10. 10.
    Ashfold, M.N.R., Claeyssens, F., Fuge, G.M., Henley, S.J.: Pulsed laser ablation and deposition of thin films. Chem. Soc. Rev. 33, 23–31 (2004)CrossRefGoogle Scholar
  11. 11.
    Yakobson, B.I., Smalley, R.E.: Fullerene nanotubes: C-1,000,000 and beyond. Am. Sci. 85, 324 (1997)Google Scholar
  12. 12.
    Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E.: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995)CrossRefGoogle Scholar
  13. 13.
    Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tománek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996)CrossRefGoogle Scholar
  14. 14.
    Boskovic, B.O., Stolojan, V., Khan, R.U.A., Haq, S., Silva, S.R.P.: Large area synthesis of carbon nanofibres at room temperature. Nat. Mater. 1, 165–168 (2002)CrossRefGoogle Scholar
  15. 15.
    Chen, G., Jensen, B., Stolojan, V., Silva, S.R.P.: Growth of carbon nanotubes at temperatures compatible with integrated circuit technologies. Carbon 49, 280–285 (2011)CrossRefGoogle Scholar
  16. 16.
    Amama, P.B., Pint, C.L., McJilton, L., Kim, S.M., Stach, E.A., Murray, P.T., Hauge, R.H., Maruyama, B.: Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9, 44–49 (2009)CrossRefGoogle Scholar
  17. 17.
    Meyyappan, M., Delzeit, L., Cassell, A., Hash, D.: Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 12, 205–216 (2003)CrossRefGoogle Scholar
  18. 18.
    See, C.H., Harris, A.T.: A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind. Eng. Chem. Res. 46, 997–1012 (2007)CrossRefGoogle Scholar
  19. 19.
    MacKenzie, K.J., Dunens, O.M., Harris, A.T.: An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Ind. Eng. Chem. Res. 49, 5323–5338 (2010)CrossRefGoogle Scholar
  20. 20.
    Nikolaev, P.: Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process. J. Nanosci. Nanotechnol. 4, 307 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Simon J. Henley
    • 1
    Email author
  • José V. Anguita
    • 1
  • S. Ravi P. Silva
    • 1
  1. 1.Nano Electronics Center, Advanced Technology InstituteUniversity of SurreyGuildford, SurreyUK