Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Synthesis of Graphene

  • Swastik KarEmail author
  • Saikat Talapatra
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_53-2



Graphene (or monolayer graphene or single-layer graphene) is a single-atom-thick, quasi-infinite, sp 2-hybridized allotrope of carbon in which the atoms are packed in a planar honeycomb crystal lattice (see Fig. 1). It can be visualized as a single sheet of graphite and its lattice structure is related to those of fullerenes for drug delivery and carbon nanotubes. Few-layered graphene, multilayered graphene, or multigraphene refers to a few layers of graphene stacked (with weak interlayer attraction) in a manner similar to graphite. Figure 1a, b is a schematic representation of a sheet of single-layer graphene.


Graphene Oxide Graphene Sheet Reduce Graphene Oxide Graphite Oxide Expandable Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U.: Das Adsorptions verhalten sehr dünner Kohlenstoffolien. Z. Anorg. Allg. Chem. 316, 119–127 (1962)CrossRefGoogle Scholar
  2. 2.
    May, J.W.: Platinum surface LEED rings. Surf. Sci. 17, 267–270 (1969)CrossRefGoogle Scholar
  3. 3.
    Eizenberg, M., Blakely, J.M.: Carbon monolayer phase condensation on Ni(111). Surf. Sci. 82, 228–236 (1979)CrossRefGoogle Scholar
  4. 4.
    Aizawa, T., Souda, R., Otani, S., Ishizawa, Y., Oshima, C.: Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys. Rev. Lett. 64, 768–771 (1990)CrossRefGoogle Scholar
  5. 5.
    Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Carbon fibers based on C60 and their symmetry. Phys Rev. B45, 6234–6242 (1992). Aizawa, T., Hwang, Y., Hayami, W., Souda, R., Otani, S., Ishizawa, Y.: Phonon dispersion of monolayer graphite on Pt(111) and NbC surfaces: bond softening and interface structures. Surf Sci. 260, 311–318 (1992)Google Scholar
  6. 6.
    Lu, X., Yu, M., Huang, H., Ruoff, R.S.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269–272 (1999)CrossRefGoogle Scholar
  7. 7.
    Lu, X., Huang, H., Nemchuk, N., Ruoff, R.S.: Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Appl. Phys. Lett. 75, 193–195 (1999)CrossRefGoogle Scholar
  8. 8.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  9. 9.
    Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004)CrossRefGoogle Scholar
  10. 10.
    Peierls, R.E.: Quelques proprieties typiques des corpses solides. Ann. Inst. Henri. Poincare 5, 177–222 (1935)Google Scholar
  11. 11.
    Landau, L.D.: Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion 11, 26–35 (1937)Google Scholar
  12. 12.
    Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Rice, T.M.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005)CrossRefGoogle Scholar
  13. 13.
    Soldano, C., Mahmood, A., Dujardin, E.: Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010)CrossRefGoogle Scholar
  14. 14.
    Rollings, E., Gweon, G.-H., Zhou, S.Y., Mun, B.S., McChesney, J.L., Hussain, B.S., Fedorov, A.N., First, P.N., de Heer, W.A., Lanzara, A.: Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids 67, 2172–2177 (2006)CrossRefGoogle Scholar
  15. 15.
    Hass, J., Feng, R., Li, T., Li, X., Zong, Z., de Heer, W.A., First, P.N., Conrad, E.H., Jeffrey, C.A., Berger, C.: Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89, 143106–143108 (2006)CrossRefGoogle Scholar
  16. 16.
    Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  17. 17.
    Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRefGoogle Scholar
  18. 18.
    Rourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., Wilson, N.R.: The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50, 3173–3177 (2011)CrossRefGoogle Scholar
  19. 19.
    Eda, G., Fanchini, G., Manish Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008)CrossRefGoogle Scholar
  20. 20.
    Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007)CrossRefGoogle Scholar
  21. 21.
    Tung, V.C., Allen, M.J., Yang, Y., Kaner, R.B.: High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25–29 (2009)CrossRefGoogle Scholar
  22. 22.
    Si, Y., Samulski, E.T.: Synthesis of water soluble graphene. Nano Lett. 8, 1679–1682 (2008)CrossRefGoogle Scholar
  23. 23.
    Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)CrossRefGoogle Scholar
  24. 24.
    Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M.: New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)CrossRefGoogle Scholar
  25. 25.
    Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981)CrossRefGoogle Scholar
  26. 26.
    Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., Dai, H.: Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3, 538–542 (2008)CrossRefGoogle Scholar
  27. 27.
    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)CrossRefGoogle Scholar
  28. 28.
    An, X., Simmons, T., Shah, R., Wolfe, C., Lewis, K.M., Washington, M., Nayak, S.K., Talapatra, S., Kar, S.: Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett. 10, 4295–4301 (2010)CrossRefGoogle Scholar
  29. 29.
    Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z., McGovern, I.T., Duesberg, G.S., Coleman, J.N.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)CrossRefGoogle Scholar
  30. 30.
    Wintterlin, J., Bocquet, M.-L.: Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009)CrossRefGoogle Scholar
  31. 31.
    N’Diaye, A.T., Bleikamp, S., Feibelman, P.J., Michely, T.: Two-dimensional Ir cluster lattice on a graphene moire on Ir(111). Phys. Rev. Lett. 97, 215501.1–215501.4 (2006)Google Scholar
  32. 32.
    Marchini, S., Gunther, S., Wintterlin, J.: Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429.1–075429.9 (2007)CrossRefGoogle Scholar
  33. 33.
    Sutter, P.W., Flege, J.-I., Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008)CrossRefGoogle Scholar
  34. 34.
    Pan, Y., Zhang, H.G., Shi, D.X., Sun, J., Du, S., Liu, F., Gao, H.-J.: Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 21, 2777–2780 (2009)CrossRefGoogle Scholar
  35. 35.
    Coraux, J., N’Diaye, A.T., Busse, C., Michely, T.: Structural coherency of graphene on Ir(111). Nano Lett. 8, 565–570 (2008)CrossRefGoogle Scholar
  36. 36.
    Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y.P., Pei, S.-S.: Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103–113105 (2008)CrossRefGoogle Scholar
  37. 37.
    Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)CrossRefGoogle Scholar
  38. 38.
    Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)CrossRefGoogle Scholar
  39. 39.
    Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Özyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhysicsNortheastern UniversityBostonUSA
  2. 2.Department of PhysicsSouthern Illinois University CarbondaleCarbondaleUSA