Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Synthesis of Gold Nanoparticles

  • Munish ChananaEmail author
  • Cintia Mateo
  • Verónica Salgueirino
  • Miguel A. Correa-Duarte
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_52-2

Synonyms

Definition

Description of different synthetic approaches for the fabrication of gold nanoparticles.

Overview

Since the beginning of recorded history, gold has always held the majestic throne among all the noble metals [1, 2]. It has been known by artisans since the Chalcolithic (Copper) Age and has become a highly coveted metal for coinage, jewelry, and other arts since that time. The first extraction of gold has been dated back to the fifth millennium B.C. in Bulgaria, but “soluble” gold (colloidal gold) first appeared around the fifth century B.C. in Egypt and China [1, 2]. Colloidal gold was used to make ruby glass and to color ceramics. Perhaps the most famous examples are the Lycurgus Cup (manufactured around fifth/fourth century B.C., exhibited in British Museum) and the pigment “Purple of Cassius” (invented by Andreas Cassius, seventeenth century) [1, 2]. But scientific research on gold sol started with Michael Faraday. In 1857, Faraday...

Keywords

Gold Nanoparticles Gold Nanorods Gold Nanoshells Surface Plasmon Resonance Absorption Gold Nanowires 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Eustis, S.E.-S., El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35(3), 209–217 (2006)CrossRefGoogle Scholar
  2. 2.
    Astruc, D., Daniel, M.C.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346 (2004)CrossRefGoogle Scholar
  3. 3.
    Perez-Juste, J., et al.: Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249(17–18), 1870–1901 (2005)CrossRefGoogle Scholar
  4. 4.
    Grzelczak, M., et al.: Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37(9), 1783–1791 (2008)CrossRefGoogle Scholar
  5. 5.
    Treguer-Delapierre, M., et al.: Synthesis of non-spherical gold nanoparticles. Gold Bull. 41(2), 195–207 (2008)CrossRefGoogle Scholar
  6. 6.
    Guerrero-Martínez, A., et al.: Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr. Opin. Colloid Interface Sci. 16(2), 118–127 (2011)CrossRefGoogle Scholar
  7. 7.
    Chow, P.E. (ed.): Gold Nanoparticles: Properties, Characterization and Fabrication Nanotechnology Science and Technology. Nova, New York (2010)Google Scholar
  8. 8.
    Feldheim, D.L. (ed.): Metal Nanoparticles: Synthesis Characterization and Applications. CRC Press, Boca Raton (2001)Google Scholar
  9. 9.
    Jana, N.R., Gearheart, L., Murphy, C.J.: Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 13(7), 2313–2322 (2001)CrossRefGoogle Scholar
  10. 10.
    Oldenburg, S.J., et al.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288(2–4), 243–247 (1998)CrossRefGoogle Scholar
  11. 11.
    Kah, J.C.Y., et al.: Synthesis of gold nanoshells based on the deposition-precipitation process. Gold Bull. 41(1), 23–36 (2008)CrossRefGoogle Scholar
  12. 12.
    Kim, F., et al.: Chemical synthesis of gold nanowires in acidic solutions. J. Am. Chem. Soc. 130(44), 14442–14443 (2008)CrossRefGoogle Scholar
  13. 13.
    Pazos-Perez, N., et al.: Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir 24(17), 9855–9860 (2008)CrossRefGoogle Scholar
  14. 14.
    Sau, T.K., Murphy, C.J.: Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126(28), 8648–8649 (2004)CrossRefGoogle Scholar
  15. 15.
    Seo, D., et al.: Directed surface overgrowth and morphology control of polyhedral gold nanocrystals. Angew. Chem. Int. Ed. 47(4), 763–767 (2008)CrossRefGoogle Scholar
  16. 16.
    Lin, G.H., et al.: A simple synthesis method for gold nano- and microplate fabrication using a tree-type multiple-amine head surfactant. Cryst. Growth Des. 10(3), 1118–1123 (2010)CrossRefGoogle Scholar
  17. 17.
    Kumar, P.S., et al.: High-yield synthesis and optical response of gold nanostars. Nanotechnology 19(1), 015606 (2008)CrossRefGoogle Scholar
  18. 18.
    Liu, M.Z., Guyot-Sionnest, P.: Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 109(47), 22192–22200 (2005)CrossRefGoogle Scholar
  19. 19.
    Kim, F., et al.: Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43(28), 3673–3677 (2004)CrossRefGoogle Scholar
  20. 20.
    Li, C.C., et al.: A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano 2(9), 1760–1769 (2008)CrossRefGoogle Scholar
  21. 21.
    Sanchez-Iglesias, A., et al.: Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater. 18(19), 2529–2534 (2006)CrossRefGoogle Scholar
  22. 22.
    Seo, D., et al.: Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra. J. Phys. Chem. C 112(7), 2469–2475 (2008)CrossRefGoogle Scholar
  23. 23.
    Millstone, J.E., et al.: Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 127(15), 5312–5313 (2005)CrossRefGoogle Scholar
  24. 24.
    Rodriguez-Fernandez, J., et al.: Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 22(16), 7007–7010 (2006)CrossRefGoogle Scholar
  25. 25.
    Perez-Juste, J., Correa-Duarte, M.A., Liz-Marzan, L.M.: Silica gels with tailored, gold nanorod-driven optical functionalities. Appl. Surf. Sci. 226(1–3), 137–143 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Munish Chanana
    • 1
    Email author
  • Cintia Mateo
    • 1
  • Verónica Salgueirino
    • 2
  • Miguel A. Correa-Duarte
    • 1
  1. 1.Departamento de Química FísicaUniversidade de VigoVigoSpain
  2. 2.Departamento de Física AplicadaUniversidade de VigoVigoSpain