Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Maxwell–Wagner Effect

  • Mitsumasa Iwamoto
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_5-2

Synonyms

Definition

The Maxwell–Wagner effect accounts for charge accumulation at the two-material interface on the basis of the difference of charge carrier relaxation times in these two materials. Macroscopically, basic electrical properties of materials are specified using two physical parameters, dielectric constant ϵ and conductivity σ. The ratio of these two parameters, \( \tau =\upepsilon /\sigma \)

Keywords

Gate Insulator Electric Field Distribution Charge Accumulation Drain Electrode Space Charge Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1, 3rd edn, p. 450. Dover, New York (1954) (Chap. X)Google Scholar
  2. 2.
    Tamura, R., Lim, E., Manaka, T., Iwamoto, M.: Analysis of pentacene field effect transistor as a Maxwell-Wagner effect element. J. Appl. Phys. 100, 114515 (2006)CrossRefGoogle Scholar
  3. 3.
    Lim, E., Manaka, T., Tamura, R., Iwamoto, M.: Maxwell-Wagner model analysis for the capacitance-voltage characteristics of pentacene field effect transistor. Jpn. J. Appl. Phys. Part 1 45, 3712 (2006)CrossRefGoogle Scholar
  4. 4.
    Lim, E., Manaka, T., Iwamoto, M.: Analysis of carrier injection into a pentacene field effect transistor by optical second harmonic generation measurements. J. Appl. Phys. 101, 024515 (2007)CrossRefGoogle Scholar
  5. 5.
    Weis, M., Lin, J., Taguchi, D., Manaka, T., Iwamoto, M.: The charge transport in organic field-effect transistor as an interface charge propagation: the Maxwell-Wagner effect model and transmission line approximation. Jpn. J. Appl. Phys. 49, 071603 (2010)CrossRefGoogle Scholar
  6. 6.
    Yamada, D., Manaka, T., Lim, E., Tamura, R., Weis, M., Iwamoto, M.: Probing of electric field in pentacene using microscopic optical second harmonic generation. J. Appl. Phys. 103, 084118 (2008)CrossRefGoogle Scholar
  7. 7.
    Weis, M., Manaka, T., Iwamoto, M.: Origin of electric field distribution in organic field-effect transistor: experiment and analysis. J. Appl. Phys. 105, 024505 (2009)CrossRefGoogle Scholar
  8. 8.
    Manaka, T., Lim, E., Tamura, R., Iwamoto, M.: Direct imaging of carrier motion in organic transistors by optical second harmonic generation. Nat. Photonics 1, 581 (2007)CrossRefGoogle Scholar
  9. 9.
    Lim, E., Yamada, D., Weis, M., Manaka, T., Iwamoto, M.: Probing of channel region in pentacene field effect transistors by optical second harmonic generation. Chem. Phys. Lett. 477, 221 (2009)CrossRefGoogle Scholar
  10. 10.
    Iwamoto, M., Manaka, T., Weis, M., Taguchi, D.: Probing and modeling of interfacial carrier motion in organic devices by optical second harmonic generation. J. Vac. Sci. Technol. B 28(4), C5F12 (2010)CrossRefGoogle Scholar
  11. 11.
    Iwamoto, M., Manaka, T., Yamamoto, T., Lim, E.: Probing motion of electric dipoles and carriers in organic monolayers by Maxwell displacement current and optical second harmonic generation. Thin Solid Films 517, 1312 (2008)CrossRefGoogle Scholar
  12. 12.
    Shen, Y.R.: The Principles of Nonlinear Optics. Wiley, New York (1984) (Chap. 1)Google Scholar
  13. 13.
    Manaka, T., Lim, E., Tamura, R., Yamada, D., Iwamoto, M.: Probing of the electric field distribution in organic field effect transistor channel by microscopic second-harmonic generation. Appl. Phys. Lett. 89, 072113 (2006)CrossRefGoogle Scholar
  14. 14.
    Shibata, Y., Nakao, M., Manaka, T., Lim, E., Iwamoto, M.: Probing electric field distribution in underlayer of an organic double-layer system by optical second-harmonic generation measurement. Jpn. J. Appl. Phys. 48, 021504 (2009)CrossRefGoogle Scholar
  15. 15.
    Zhang, L., Taguchi, D., Li, J., Manaka, T., Iwamoto, M.: Probing of interfacial charging and discharging in double-layer devices with a polyimide blocking layer by time-resolved optical second harmonic generation. J. Appl. Phys. 108, 093707 (2010)CrossRefGoogle Scholar
  16. 16.
    Taguchi, D., Inoue, S., Zhang, L., Li, J., Weis, M., Manaka, T., Iwamoto, M.: Analysis of organic light-emitting diode as a Maxwell-Wagner effect element by time-resolved optical second harmonic generation measurement. J. Phys. Chem. Lett. 1, 803 (2010)CrossRefGoogle Scholar
  17. 17.
    Taguchi, D., Zhang, L., Li, J., Weis, M., Manaka, T., Iwamoto, M.: Analysis of carrier transients in double-layer organic light emitting diodes by electric-field-induced second-harmonic generation measurement. J. Phys. Chem. C 114, 15136 (2010)CrossRefGoogle Scholar
  18. 18.
    Manaka, T., Liu, F., Weis, M., Iwamoto, M.: Diffusion like electric-field migration in the channel of organic field-effect transistors. Phys. Rev. B 78, 121302R (2008)CrossRefGoogle Scholar
  19. 19.
    Manaka, T., Liu, F., Weis, M., Iwamoto, M.: Influence of traps on transient electric field and mobility evaluation in organic field-effect transistors. J. Appl. Phys. 107, 043712 (2010)CrossRefGoogle Scholar
  20. 20.
    Nakao, M., Manaka, T., Weis, M., Lim, E., Iwamoto, M.: Probing carrier injection into pentacene field effect transistor by time-resolved microscopic optical second harmonic generation measurement. J. Appl. Phys. 106, 014511 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Physical ElectronicsTokyo Institute of TechnologyMeguro-ku, TokyoJapan