Skip to main content



“Acoustophoresis” means migration with sound, i.e., “phoresis” (migration) and “acousto” (sound waves) are the executors of the movement. In related concepts, electric forces move particles in electrophoresis and magnetic forces in magnetophoresis [1]. Acoustophoresis is a non-contact and label-free mode of manipulating particles and cell populations and allows for implementation of several separation modes [2]. The technology is currently finding increased applications in bioanalytical and clinical applications of cell handling and manipulation. An extensive tutorial series on acoustophoresis was recently published by Royal Society of Chemistry [3].


Particles in suspension exposed to an acoustic standing wave field will be affected by an acoustic radiation force [4]. The force will cause the particle to move in the sound field if the acoustic properties of the particle differ from the surrounding medium. The magnitude of the movement depends on factors, such as the...


  • Standing Wave
  • Pressure Node
  • Standing Wave Field
  • Binary Separation
  • Acoustic Standing Wave

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Lenshof, A., Laurell, T.: Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39(3), 1203–1217 (2010)

    CrossRef  Google Scholar 

  2. Laurell, T., Petersson, F., Nilsson, A.: Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 36(3), 492–506 (2007)

    CrossRef  Google Scholar 

  3. Bruus, H., et al.: Forthcoming Lab on a chip tutorial series on acoustofluidics: acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11, 3579–3580 (2011)

    CrossRef  Google Scholar 

  4. Gorkov, L.P.: On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phys. Dokl. 6(9), 773–775 (1962)

    Google Scholar 

  5. Groschl, M.: Ultrasonic separation of suspended particles – part I: fundamentals. Acustica 84(3), 432–447 (1998)

    Google Scholar 

  6. Trampler, F., et al.: Acoustic cell filter for high-density perfusion culture of hybridoma cells. Bio/Technology 12(3), 281–284 (1994)

    CrossRef  Google Scholar 

  7. Augustsson, P., et al.: Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal. Chem. 84, 7954–7962 (2012)

    CrossRef  Google Scholar 

  8. Nordin, M., et al.: Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis. Lab Chip 12, 4610–4616 (2012)

    CrossRef  Google Scholar 

  9. Jakobsson, O., et al.: Acoustic actuated fluorescence activated sorting of microparticles. Lab Chip 14, 1943–1950 (2014)

    CrossRef  Google Scholar 

  10. Lenshof, A., et al.: Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal. Chem. 81(15), 6030–6037 (2009)

    CrossRef  Google Scholar 

  11. Petersson, F., et al.: Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal. Chem. 77(5), 1216–1221 (2005)

    CrossRef  Google Scholar 

  12. Augustsson, P., et al.: Decomplexing biofluids using microchip based acoustophoresis. Lab Chip 9(6), 810–818 (2009)

    CrossRef  Google Scholar 

  13. Evander, M., et al.: Acoustophoresis in wet-etched glass chips. Anal. Chem. 80(13), 5178–5185 (2008)

    CrossRef  Google Scholar 

  14. Persson, J., et al.: Acoustic microfluidic chip technology to facilitate automation of phage display selection. FEBS J. 275(22), 5657–5666 (2008)

    CrossRef  Google Scholar 

  15. Lenshof, A., Warner, B., Laurell, T. Acoustophoretic pretreatment of cell lysate prior to FACS analysis. In: Micro Total Analysis Systems 2010. Groningen (2010)

    Google Scholar 

  16. Jonsson, H., et al.: Particle separation using ultrasound can radically reduce embolic load to brain after cardiac surgery. Ann. Thorac. Surg. 78(5), 1572–1578 (2004)

    CrossRef  Google Scholar 

  17. Grenvall, C., et al.: Harmonic microchip acoustophoresis: a route to online raw milk sample precondition in protein and lipid content quality control. Anal. Chem. 81(15), 6195–6200 (2009)

    CrossRef  Google Scholar 

  18. Petersson, F., et al.: Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79(14), 5117–5123 (2007)

    CrossRef  Google Scholar 

  19. Dykes, J., et al.: Efficient removal of platelets from peripheral blood progenitor cell products using a novel microchip based acoustophoretic platform. PLoS One 6, e23074 (2011)

    CrossRef  Google Scholar 

  20. Lenshof, A., et al.: Efficient purification of CD41 lymphocytes from peripheral blood progenitor cell products using affinity bead acoustophoresis. Cytom. A 85, 933–941 (2014)

    CrossRef  Google Scholar 

  21. Hultstrom, J., et al.: Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip. Ultrasound Med. Biol. 33(1), 145–151 (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Andreas Lenshof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lenshof, A., Laurell, T. (2015). Acoustophoresis. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science