Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Surface-Modified Microfluidics and Nanofluidics

  • Kaushik K. Rangharajan
  • Shaurya PrakashEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_395-2


Fluid phenomena in micrometer (1–100 μm) or nanometer (1–100 nm)-sized channels that are governed by coupled principles from fluid mechanics, surface chemistry, electrochemistry, and electrostatics are generally referred to as microfluidic and nanofluidic phenomena [1]. The smaller length scales compared to traditional fluid mechanics provide several new and interesting phenomena due to significant enhancement of the surface-area-to-volume ratio, which makes surface-mediated flows important to the overall field of microfluidics and nanofluidics.

Introduction to Surfaces in Microfluidics and Nanofluidics

Microfluidic and nanofluidic devices and systems are characterized by high surface-area-to-volume (SA/V) ratio. For example, a rectangular cross-section channel with 100 μm width, 100 nm depth, and 1 cm length will have a SA/V ratio on the order of 106 m−1. In fact, operational devices incorporating components with SA/V ratio on the order of 109 m−1have already been...


Electric Double Layer Drag Reduction Surface Charge Density Slip Length Slip Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Prakash, S., Yeom, J.: Nanofluidics and Microfluidics. Elsevier (2014)Google Scholar
  2. 2.
    Prakash, S., et al.: Nanofluidics: systems and applications. IEEE Sensors J. 8, 441–450 (2008)CrossRefGoogle Scholar
  3. 3.
    Wu, Y., et al.: Dynamic response of AFM cantilevers to dissimilar functionalized silica surfaces in aqueous electrolyte solutions. Langmuir 26(22), 16963–16972 (2010)CrossRefGoogle Scholar
  4. 4.
    Prakash, S., Karacor, M.B., Banerjee, S.: Surface modification in microsystems and nanosystems. Surf. Sci. Rep. 64(7), 233–254 (2009)CrossRefGoogle Scholar
  5. 5.
    Prakash, S., et al.: ‘Click’ modification of silica surfaces and glass microfluidic channels. Anal. Chem. 79(4), 1661–1667 (2007)CrossRefGoogle Scholar
  6. 6.
    Grahame, D.C.: The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41(3), 441–501 (1947)CrossRefGoogle Scholar
  7. 7.
    Pinti, M., et al.: Active surface potential control for artificial ion pumps. In: Technical Digest Solid-State Sensors, Actuators, and Microsystems Workshop. Hilton Head Island (2014)Google Scholar
  8. 8.
    Lauga, E., Stone, H.A., Brenner, M.P.: Microfluidics: the no-slip boundary condition. In: Tropea, C., Yarin, A., Foss, J.F. (eds.) Handbook of Experimental Fluid Dynamics, pp. 1219–1240. Springer, New York (2007)Google Scholar
  9. 9.
    Granick, S., Zhu, Y., Lee, H.: Slippery questions about complex fluids flowing past solids. Nat. Mater. 2, 221 (2003)CrossRefGoogle Scholar
  10. 10.
    Neto, C., et al.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859–2897 (2005)CrossRefGoogle Scholar
  11. 11.
    Bhushan, B., Jung, Y.C.: Natural and artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)CrossRefGoogle Scholar
  12. 12.
    Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)CrossRefGoogle Scholar
  13. 13.
    Daiguji, H., et al.: Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 4(12), 2315–2321 (2004)CrossRefGoogle Scholar
  14. 14.
    Goswami, P., Chakraborty, S.: Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip. Langmuir 26(1), 581 (2009)CrossRefGoogle Scholar
  15. 15.
    Tyrrell, J.W.G., Attard, P.: Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 87(17), 176104 (2001)CrossRefGoogle Scholar
  16. 16.
    Craig, V.S.J.: Very small bubbles at surfaces-the nanobubble puzzle. Soft Matter. 7(1), 40 (2011)CrossRefGoogle Scholar
  17. 17.
    Dai, Z., Fornasiero, D., Ralston, J.: Influence of dissolved gas on bubble-particle heterocoagulation. J. Chem. Soc. Faraday Trans. 94(14), 1983–1987 (1998)CrossRefGoogle Scholar
  18. 18.
    Zhou, Z.A., et al.: On the role of cavitation in particle collection in flotation – a critical review. II. Miner. Eng. 22(5), 419 (2009)CrossRefGoogle Scholar
  19. 19.
    Wu, Z., et al.: Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. J. Colloid Interface Sci. 328(1), 10–14 (2008)CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Bhushan, B., Maali, A.: Atomic force microscopy measurement of boundary slip on hydrophilic, hydrophobic, and superhydrophobic surfaces. Chin. J. Vac. Sci. Technol. A: Vac. Surf. Films 27(4), 754–760 (2009)CrossRefGoogle Scholar
  21. 21.
    Rangharajan, K.K., Kwak, K.J., Conlisk, A.T., Wu, Y., Prakash, S.: Effect of surface modification on interfacial nanobubble morphology and contact line tension. Soft Matter, 11, 5214–5223 (2015).CrossRefGoogle Scholar
  22. 22.
    Zhao, B., Moore, J.S., Beebe, D.J.: Surface-directed liquid flow inside microchannels. Science 291(5506), 1023 (2001)CrossRefGoogle Scholar
  23. 23.
    Prakash, S., Karacor, M.B.: Surface mediated flows in glass nanofluidic channels. In: Solid State Sensors, Actuators, and Microsystems Workshop. Transducer Research Foundation, Hilton Head Island (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA