Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Stimuli-Responsive Drug Delivery Microchips

  • Jian Chen
  • Jason Li
  • Michael Chu
  • Claudia R. Gordijo
  • Yu Sun
  • Xiao Yu WuEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_390-2



Stimuli-responsive drug delivery microchips are MEMS-based “smart” drug delivery devices composed of individually sealed drug reservoirs that can be opened selectively for complex drug release by various stimuli, targeting long-term implantation applications.


Overview of Working Mechanism

Advances in MEMS technology have enabled the precise fabrication of miniature biomedical devices with micrometer-sized features for implantable drug delivery. Drug delivery microchips contain small reservoirs that are loaded with drugs and separated from the outside environment by a drug release barrier. Examples of reported MEMS devices utilize various approaches including electrochemical dissolution, electrothermal activation, chemical degradation, or self-regulation to control temporal drug release or modulate the permeability of the drug release barrier for drug...


Drug Release Composite Membrane Drug Delivery Device Electrochemical Dissolution Drug Reservoir 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Santini Jr., J.T., Cima, M.J., Langer, R.: A controlled-release microchip. Nature 397, 335–338 (1999)CrossRefGoogle Scholar
  2. 2.
    Prescott, J.H., Lipka, S., Baldwin, S., Sheppard Jr., N.F., Maloney, J.M., Coppeta, J., Yomtov, B., Staples, M.A., Santini Jr., J.T.: Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat. Biotechnol. 24, 437–438 (2006)CrossRefGoogle Scholar
  3. 3.
    Grayson, A.C.R., Choi, I.S., Tyler, B.M., Wang, P.P., Brem, H., Cima, M.J., Langer, R.: Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater. 2, 767–772 (2003)CrossRefGoogle Scholar
  4. 4.
    Yam, F., Wu, X., Zhang, Q.: A novel composite membrane for temperature-and pH-responsive permeation. In: Park, K., Mrsny, R.J. (eds.) Controlled Drug Delivery: Designing Technologies for the Future. ACS Symposium Series, pp. 263–272. American Chemical Society, Washington, DC (2000)CrossRefGoogle Scholar
  5. 5.
    Zhang, K., Wu, X.Y.: Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials 25, 5281–5291 (2004)CrossRefGoogle Scholar
  6. 6.
    Zhang, K., Wu, X.Y.: Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J. Control. Release 80, 169–178 (2002)CrossRefGoogle Scholar
  7. 7.
    Chen, J., Chu, M., Koulajian, K., Wu, X.Y., Giacca, A., Sun, Y.: A monolithic polymeric microdevice for pH-responsive drug delivery. Biomed. Microdevices 11, 1251–1257 (2009)CrossRefGoogle Scholar
  8. 8.
    Gordijo, C.R., Shuhendler, A.J., Wu, X.Y.: Glucose-responsive bioinorganic nanohybrid membrane for self-regulated insulin release. Adv. Funct. Mater. 20, 1404–1412 (2010)CrossRefGoogle Scholar
  9. 9.
    Gordijo, C.R., Koulajian, K., Shuhendler, A.J., Bonifacio, L.D., Huang, H.Y., Chiang, S., Ozin, G.A., Giacca, A., Wu, X.Y.: Nanotechnology-enabled closed loop insulin delivery device: in vitro and in vivo evaluation of glucose-regulated insulin release for diabetes control. Adv. Funct. Mater. 21, 73–82 (2011)CrossRefGoogle Scholar
  10. 10.
    Chu, M.K., Gordijo, C.R., Li, J., Abbasi, A.Z., Giacca, A., Plettenburg, O., Wu, X.Y.: In vivo performance and biocompatibility of a subcutaneous implant for real-time glucose-responsive insulin delivery. Diabetes Technol. Ther. 17, 255–267 (2015)CrossRefGoogle Scholar
  11. 11.
    Nichols, S.P., Koh, A., Storm, W.L., Shin, J.H., Schoenfisch, M.H.: Biocompatible materials for continuous glucose monitoring devices. Chem. Rev. 113, 2528–2549 (2013)CrossRefGoogle Scholar
  12. 12.
    Anderson, J.M., Rodriguez, A., Chang, D.T.: Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008)CrossRefGoogle Scholar
  13. 13.
    Parker, J.A., Walboomers, X.F., Von den Hoff, J.W., Maltha, J.C., Jansen, J.A.: The effect of bone anchoring and micro-grooves on the soft tissue reaction to implants. Biomaterials 23, 3887–3896 (2002)CrossRefGoogle Scholar
  14. 14.
    Moshayedi, P., Ng, G., Kwok, J.C.F., Yeo, G.S.H., Bryant, C.E., Fawcett, J.W., Franze, K., Guck, J.: The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014)CrossRefGoogle Scholar
  15. 15.
    Muskovich, M., Bettinger, C.J.: Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv. Healthcare Mater. 1, 248–266 (2012)CrossRefGoogle Scholar
  16. 16.
    Bridges, A.W., García, A.J.: Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J. Diabetes Sci. Technol. 2, 984–994 (2008)Google Scholar
  17. 17.
    Blanco, E., Weinberg, B.D., Stowe, N.T., Anderson, J.M., Gao, J.: Local release of dexamethasone from polymer millirods effectively prevents fibrosis after radiofrequency ablation. J. Biomed. Mater. Res. A 76, 174–182 (2006)CrossRefGoogle Scholar
  18. 18.
    Hetrick, E.M., Prichard, H.L., Klitzman, B., Schoenfisch, M.H.: Reduced foreign body response at nitric oxide-releasing subcutaneous implants. Biomaterials 28, 4571–4580 (2007)CrossRefGoogle Scholar
  19. 19.
    Choi, J., Jang, B.N., Park, B.J., Joung, Y.K., Han, D.K.: Effect of solvent on drug release and a spray-coated matrix of a sirolimus-eluting stent coated with poly(lactic-co-glycolic acid). Langmuir 30, 10098–10106 (2014)CrossRefGoogle Scholar
  20. 20.
    Ren, K., Zhang, M., He, J., Wu, Y., Ni, P.: Preparation of polymeric prodrug paclitaxel-poly(lactic acid)-b-polyisobutylene and its application in coatings of drug eluting stent. ACS Appl. Mater. Interfaces (2015). doi:10.1021/acsami.5b01410Google Scholar
  21. 21.
    Lokanathan, A.R., Zhang, S., Regina, V.R., Cole, M.A., Ogaki, R., Dong, M., Besenbacher, F., Meyer, R.L., Kingshott, P.: Mixed poly (ethylene glycol) and oligo (ethylene glycol) layers on gold as nonfouling surfaces created by backfilling. Biointerphases 6, 180–188 (2011)CrossRefGoogle Scholar
  22. 22.
    Li, P., Poon, Y.F., Li, W., Zhu, H.-Y., Yeap, S.H., Cao, Y., Qi, X., Zhou, C., Lamrani, M., Beuerman, R.W., Kang, E.-T., Mu, Y., Li, C.M., Chang, M.W., Jan Leong, S.S., Chan-Park, M.B.: A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 10, 149–156 (2011)CrossRefGoogle Scholar
  23. 23.
    Glasmästar, K., Larsson, C., Höök, F., Kasemo, B.: Protein adsorption on supported phospholipid bilayers. J. Colloid Interface Sci. 246, 40–47 (2002)CrossRefGoogle Scholar
  24. 24.
    de Vos, P., Faas, M.M., Strand, B., Calafiore, R.: Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27, 5603–5617 (2006)CrossRefGoogle Scholar
  25. 25.
    Li, J., Chu, M.K., Gordijo, C.R., Abbasi, A.Z., Chen, K., Adissu, H.A., Lohn, M., Giacca, A., Plettenburg, O., Wu, X.Y.: Microfabricated microporous membranes reduce the host immune response and prolong the functional lifetime of a closed-loop insulin delivery implant in a type 1 diabetic rat model. Biomaterials 47, 51–61 (2015)CrossRefGoogle Scholar
  26. 26.
    Chertok, B., Webber, M.J., Succi, M.D., Langer, R.S.: Drug delivery interfaces in the 21st century: From science fiction ideas to viable technologies. Mol Pharm. 10, 7 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jian Chen
    • 1
  • Jason Li
    • 2
  • Michael Chu
    • 2
  • Claudia R. Gordijo
    • 2
  • Yu Sun
    • 3
  • Xiao Yu Wu
    • 2
    Email author
  1. 1.State Key Laboratory of Transducer Technology, Institute of ElectronicsChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoCanada
  3. 3.Department of Mechanical and Industrial Engineering and Institute of Biomaterials and Biomedical Engineering and Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada