Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Surface Forces Apparatus

  • Carlos Drummond
  • Marina RuthsEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_367-2

Synonyms

Definition

The surface forces apparatus (SFA) is an instrument for sensitive measurements of normal and lateral forces between two macroscopic surfaces in contact or separated by a thin film. The surface separation distance can be measured and independently controlled to 0.1 nm. The surfaces typically form a single-asperity contact where the substrates deform elastically, and time- and rate-dependent effects in the measured forces can be ascribed to phenomena in the thin films or adsorbed monolayers confined between the surfaces.

Basics of the SFA Technique

The Surfaces and the Apparatus

In SFA experiments, normal and lateral interaction forces are measured between two surfaces across air or a medium (a confined film). The most commonly used surface substrates are back-silvered, molecularly smooth muscovite mica sheets glued to half-cylindrical fused-silica disks. These half-cylindrical surfaces are mounted in the SFA in a crossed-cylinder configuration...

Keywords

Normal Force Mica Surface Surface Separation Surface Force Apparatus Mica Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Israelachvili, J.N., McGuiggan, P.M.: Adhesion and short-range forces between surfaces. Part 1: new apparatus for surface force measurements. J. Mater. Res. 5, 2223–2231 (1990)CrossRefGoogle Scholar
  2. 2.
    Ruths, M., Israelachvili, J.N.: Surface forces and nanorheology in molecularly thin films. In: Bhushan, B. (ed.) Springer Handbook of Nanotechnology, 3rd edn, pp. 857–922. Springer, Berlin/Heidelberg (2010), and references thereinCrossRefGoogle Scholar
  3. 3.
    Luengo, G., Schmitt, F.-J., Hill, R., Israelachvili, J.: Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromolecules 30, 2482–2494 (1997), and references thereinCrossRefGoogle Scholar
  4. 4.
    Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Academic, Amsterdam (2011), and references thereinGoogle Scholar
  5. 5.
    Israelachvili, J.N., Adams, G.E.: Measurements of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm. J. Chem. Soc. Faraday Trans. I 74, 975–1001 (1978)CrossRefGoogle Scholar
  6. 6.
    Parker, J.L., Christenson, H.K., Ninham, B.W.: Device for measuring the force and separation between two surfaces down to molecular separations. Rev. Sci. Instrum. 60, 3135–3138 (1989)CrossRefGoogle Scholar
  7. 7.
    Israelachvili, J., Min, Y., Akbulut, M., Alig, A., Carver, C., Greene, W., Kristiansen, K., Meyer, E., Pesika, N., Rosenberg, K., Zeng, H.: Recent advances in the surface forces apparatus (SFA). Rep. Prog. Phys. 73, 036601 (2010), and references thereinCrossRefGoogle Scholar
  8. 8.
    Israelachvili, J.N.: Thin film studies using multiple-beam interferometry. J. Colloid Interface Sci. 44, 259–272 (1973)CrossRefGoogle Scholar
  9. 9.
    Stewart, A.M., Parker, J.L.: Force feedback surface force apparatus: principles of operation. Rev. Sci. Instrum. 63, 5626–5633 (1992)CrossRefGoogle Scholar
  10. 10.
    Tonck, A., Georges, J.M., Loubet, J.L.: Measurements of intermolecular forces and the rheology of dodecane between alumina surfaces. J. Colloid Interface Sci. 126, 150–163 (1988)CrossRefGoogle Scholar
  11. 11.
    Heuberger, M.: The extended surface forces apparatus. Part I. Fast spectral correlation interferometry. Rev. Sci. Instrum. 72, 1700–1707 (2001), and references thereinCrossRefGoogle Scholar
  12. 12.
    Peachey, J., Van Alsten, J., Granick, S.: Design of an apparatus to measure the shear response of ultrathin liquids films. Rev. Sci. Instrum. 62, 463–473 (1991), and references thereinCrossRefGoogle Scholar
  13. 13.
    Raviv, U., Tadmor, R., Klein, J.: Shear and frictional interactions between adsorbed polymer layers in a good solvent. J. Phys. Chem. B 105, 8125–8134 (2001), and references thereinCrossRefGoogle Scholar
  14. 14.
    Qian, L., Luengo, G., Douillet, D., Charlot, M., Dollat, X., Perez, E.: New two-dimensional friction force apparatus design for measuring shear forces at the nanometer scale. Rev. Sci. Instrum. 72, 4171–4177 (2001)CrossRefGoogle Scholar
  15. 15.
    Israelachvili, J.N., Kott, S.J., Fetters, L.J.: Measurements of dynamic interactions in thin films of polymer melts: the transition from simple to complex behavior. J. Polym. Sci. B 27, 489–502 (1989)CrossRefGoogle Scholar
  16. 16.
    Dhinojwala, A., Granick, S.: New approaches to measure interfacial rheology of confined films. J. Chem. Soc. Faraday Trans. 92, 619–623 (1996)CrossRefGoogle Scholar
  17. 17.
    Stewart, A.M.: Capacitance dilatometry attachment for a surface-force apparatus. Measure. Sci. Technol. 11, 298–304 (2000)CrossRefGoogle Scholar
  18. 18.
    Mächtle, P., Müller, C., Helm, C.A.: A thin absorbing layer at the center of a Fabry-Perot interferometer. J. Phys. II 4, 481–500 (1994)Google Scholar
  19. 19.
    Bae, S.C., Wong, J.S., Kim, M., Jiang, S., Hong, L., Granick, S.: Using light to study boundary lubrication: spectroscopic study of confined films. Philos. Trans. A Math. Phys. Eng. Sci. 366, 1443–1454 (2008), and references thereinCrossRefGoogle Scholar
  20. 20.
    Idziak, S.H.J., Koltover, I., Israelachvili, J.N., Safinya, C.R.: Structure in a confined smectic liquid crystal with competing surface and sample elasticities. Phys. Rev. Lett. 76, 1477–1480 (1996)CrossRefGoogle Scholar
  21. 21.
    Seeck, O.H., Kim, H., Lee, D.R., Shu, D., Kaendler, I.D., Basu, J.K., Sinha, S.K.: Observation of thickness quantization in liquid films confined to molecular dimension. Europhys. Lett. 60, 376–382 (2002)CrossRefGoogle Scholar
  22. 22.
    Berg, S., Ruths, M., Johannsmann, D.: High-frequency measurements of interfacial friction using quartz crystal resonators integrated into a surface forces apparatus. Phys. Rev. E 65, 026119 (2002)CrossRefGoogle Scholar
  23. 23.
    Valtiner, M., Banquy, X., Kristiansen, K., Greene, G.W., Israelachvili, J.N.: The electrochemical surface forces apparatus: the effect of surface roughness, electrostatic surface potentials, and anodic oxide growth on interaction forces, and friction between dissimilar surfaces in solution. Langmuir 28, 13080–13093 (2012)CrossRefGoogle Scholar
  24. 24.
    Chai, L., Klein, J.: Interaction between molecularly smooth gold and mica surfaces across aqueous solutions. Langmuir 25, 11533–11540 (2009), and references thereinCrossRefGoogle Scholar
  25. 25.
    Golan, Y., Alcantar, N.A., Kuhl, T.L., Israelachvili, J.: Generic substrate for the surface forces apparatus: deposition and characterization of silicon nitride surfaces. Langmuir 16, 6955–6960 (2000)CrossRefGoogle Scholar
  26. 26.
    Horn, R.G., Smith, D.T., Haller, W.: Surface forces and viscosity of water measured between silica sheets. Chem. Phys. Lett. 162, 404–408 (1989)CrossRefGoogle Scholar
  27. 27.
    Merrill, W.W., Pocius, A.V., Thakker, B.V., Tirrell, M.: Direct measurement of molecular level adhesion forces between biaxially oriented solid polymer films. Langmuir 7, 1975–1980 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Centre de Recherche Paul Pascal, CNRS–Université Bordeaux 1PessacFrance
  2. 2.Department of ChemistryUniversity of Massachusetts LowellLowellUSA