Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

SU-8 Photoresist

  • Frederik CeyssensEmail author
  • Robert Puers
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_360-2



SU-8 is a high aspect ratio epoxy-based negative photoresist commonly used as structural material in lithographic fabrication.


SU-8 was developed by IBM as a thick negative photoresist targeted to the fabrication of molds for electroplating. The epoxy-based negative photoresist has some remarkable properties. First of all, it has a wide range of coating thicknesses: layers from several hundreds of nanometers up to several hundreds of microns can be deposited by a single standard spin coating step, using the appropriate dilution of the SU-8 resin. Even thicker layers can be deposited and photopatterned successfully as will be discussed later. Second, structures featuring...


Sacrificial Layer Exposure Energy Carrier Wafer Propylene Glycol Methyl Ether Acetate Propylene Glycol Methyl Ether Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Zhang, J., Tan, K.L., Hong, G.D., Yang, L.J., Gong, H.Q.: Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J. Micromech. Microeng. 11, 20–26 (2002)CrossRefGoogle Scholar
  2. 2.
    Ceyssens, F.: Micromachining in polymers and glass: process development and applications. Ph.D. thesis, KULeuven, Leuven, Belgium (2009)Google Scholar
  3. 3.
    Schoeberle, B., Wendlandt, M., Hierold, C.: Long-term creep behavior of SU-8 membranes: application of the time-stress superposition principle to determine the master creep compliance curve. Sens. Actuators A Phys. 142, 242–249 (2008)CrossRefGoogle Scholar
  4. 4.
    Chung, C.K., Hong, Y.Z.: Surface modification of SU8 photoresist for shrinkage improvement in a monolithic MEMS microstructure. J. Micromech. Microeng. 17, 207–212 (2007)CrossRefGoogle Scholar
  5. 5.
    Bohl, B., Steger, R., Zengerle, R., Koltav, P.: Multilayer SU-8 lift-off technology for microfluidic devices. J. Micromech. Microeng. 15, 1125–1130 (2005)CrossRefGoogle Scholar
  6. 6.
    MicroChem: SU-8 datasheet and adhesion results-shear analysis. www.microchem.com (2007). Accessed 18 Nov 2011
  7. 7.
    Teh, W.H., Dürig, U., Drechsler, U., Smith, C.G., Gntherodt, H.-J.: Effect of low numerical-aperture femtosecond two-photon absorption on SU-8 resist for ultrahigh-aspect-ratio microstereolithography. J. Appl. Phys. 97, 4095 (2005)Google Scholar
  8. 8.
    Becnel, C., Desta, Y., Kelly, K.: Ultra-deep x-ray lithography of densely packed SU-8 features: I. An SU-8 casting procedure to obtain uniform solvent content with accompanying experimental results. J. Micromech. Microeng. 15, 1242–1248 (2005)CrossRefGoogle Scholar
  9. 9.
    Wouters, K., Robert, P.R.: Diffusing and swelling in SU-8: insight in material properties and processing. J. Micromech. Microeng. 20, 095013 (2010)CrossRefGoogle Scholar
  10. 10.
    Reznikova, E.F., Mohr, J., Hein, H.: Deep photo-lithography characterization of SU-8 resist layers. J. Microsyst. Technol. 11, 282–291 (2005)CrossRefGoogle Scholar
  11. 11.
    Feng, R., Farris, R.: Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings. J. Micromech. Microeng. 13, 80–88 (2003)CrossRefGoogle Scholar
  12. 12.
    Hammacher, J., Fuelle, A., Flaemig, J., Saupe, J., Loechel, B., Grimm, J.: Stress engineering and mechanical properties of SU-8-layers for mechanical applications. J. Microsyst. Technol. 14, 1515–1523 (2007)CrossRefGoogle Scholar
  13. 13.
    Williams, J.D., Wang, W.: Using megasonic development of SU-8 to yield ultrahigh aspect ratio microstructures with UV lithography. J. Microsyst. Technol. 10, 694–698 (2004)CrossRefGoogle Scholar
  14. 14.
    Dentinger, P.M., Miles, C., Goods, S.H.: Removal of SU-8 photoresist for thick film applications. Microelectron. Eng. 61–62, 993–1000 (2002)CrossRefGoogle Scholar
  15. 15.
    Witzgall, G., Vrijen, R., Yablonovitch, E., Doan, V., Schwartz, B.J.: Single-shot two-photon exposure of commercial photoresist for the production of threedimensional structures. Opt. Lett. 23, 1745 (1998)CrossRefGoogle Scholar
  16. 16.
    Becnel, C., Desta, Y., Kelly, K.: Ultra-deep x-ray lithography of densely packed SU-8 features: II. Process performance as a function of dose, feature height and post exposure bake temperature. J. Micromech. Microeng. 15, 1249–1259 (2005)CrossRefGoogle Scholar
  17. 17.
    Sato, H., Matsumura, H., Keino, S., Shoji, S.: An all SU-8 microfluidic chip with built-in 3D fine microstructures. J. Micromech. Microeng. 16, 2318–2322 (2006)CrossRefGoogle Scholar
  18. 18.
    Chuang, Y., Tseng, F., Cheng, J., Lin, W.: A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists. Sens. Actuators A Phys. 103, 64–69 (2003)CrossRefGoogle Scholar
  19. 19.
    del Campo, A., Greiner, C.: SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 17, R81–R95 (2007)CrossRefGoogle Scholar
  20. 20.
    Metz, S., Jiguet, S., Bertsch, A., Renaud, P.: Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab Chip 4, 114–120 (2004)CrossRefGoogle Scholar
  21. 21.
    Carlier, J., Arscott, S., Thomy, V., Fourrier, J.C., Caron, F., Camart, J.C., Druon, C., Tabourier, P.: Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis. J. Micromech. Microeng. 14, 619–624 (2004)CrossRefGoogle Scholar
  22. 22.
    Arroyo, M.T., Fernández, L.J., Agirregabiria, M., Ibañez, N., Aurrekoetxea, J., Blanco, F.J.: Novel all-polymer microfluidic devices monolithically integrated within metallic electrodes for SDS-CGE of proteins. J. Micromech. Microeng. 17, 1289–1298 (2007)CrossRefGoogle Scholar
  23. 23.
    Jiguet, S., Bertsch, A., Hofmann, H., Renaud, P.: Conductive SU8-silver composite photopolymer. In: Proceedings of Micro Electro Mechanical Systems, Maastricht, The Netherlands. pp. 125–128 (2004)Google Scholar
  24. 24.
    Yang, R., Wang, W.: A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures. Sens. Actuators B 110, 279–288 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department ESAT-MICASKULeuvenLeuvenBelgium