Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Force Modulation in Atomic Force Microscopy

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_36-2

Definition

Force modulation in atomic force microscopy is a technique to measure tip–surface interactions which in turn are determined by local elastic restoring forces, by local frictional forces, and by local adhesion between a tip and the surface under inspection. The tip or sample is oscillated at a given frequency and pushed into the repulsive regime. Data on local forces can be acquired along with topography, which allows comparison of both height and material properties.

Overview

In atomic force microscopy (AFM), a micro-fabricated elastic beam with a sensor tip at its end is scanned over the sample surface and generates high-resolution images of surfaces. Dynamic modes, where the cantilever or the sample surface is vibrated, belong to the standard equipment of most commercial instruments. With a variety of these techniques, such as force modulation microscopy, scanning local-acceleration microscopy, scanning microdeformation microscopy, or pulsed force microscopy, images can be...

Keywords

Atomic Force Microscopy Contact Stiffness Force Modulation Acoustical Imaging Indentation Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. 1.
    Zinin, P., Arnold, W., Weise, W., Berezina, S.: Theory and applications of scanning acoustic microscopy and scanning near-field acoustical imaging. In: Kundu, T. (ed.) Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2012), and references contained thereinGoogle Scholar
  2. 2.
    Maivald, P., Butt, H.-J., Gould, S.A.C., Prater, C.B., Drake, B., Gurley, J.A., Elings, V.B., Hansma, P.K.: Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2, 103–106 (1991)CrossRefGoogle Scholar
  3. 3.
    Radmacher, M., Tilmann, R.W., Gaub, H.E.: Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys. J. 64, 735–742 (1993)CrossRefGoogle Scholar
  4. 4.
    Burnham, N.A., Gremaud, G., Kulik, A.J., Gallo, P.-J., Oulevey, F.: Materials properties measurements: choosing the optimal scanning probe microscope configuration. J. Vac. Sci. Technol. B14, 1308–1312 (1996)CrossRefGoogle Scholar
  5. 5.
    Syed Asif, S.A., Wahl, K.J., Colton, R.J., Warren, O.L.: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192–1200 (2001), and references contained thereinCrossRefGoogle Scholar
  6. 6.
    Krotil, H.-U., Stifter, T., Marti, O.: Concurrent measurement of adhesive and elastic surface properties with a new modulation technique for scanning force microscopy. Rev. Sci. Instrum. 71, 2765–2771 (2000)CrossRefGoogle Scholar
  7. 7.
    Rabe, U., Janser, K., Arnold, W.: Vibrations of free and surface-coupled atomic-force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67, 3281–3293 (1996)CrossRefGoogle Scholar
  8. 8.
    Kopycinska-Müller, M., Caron, A., Hirsekorn, S., Rabe, U., Natter, N., Hempelmann, R., Birringer, R., Arnold, W.: Quantitative evaluation of elastic properties of nano-crystalline nickel using atomic force acoustic microscopy. Z. Phys. Chem. 222, 471–498 (2008), and references contained thereinCrossRefGoogle Scholar
  9. 9.
    Yamanaka, K., Kobari, K., Tsuji, T.: Evaluation of functional materials and devices using atomic force microscopy with ultrasonic measurements. Jpn. J. Appl. Phys. 47, 6070–6076 (2008), and references contained thereinCrossRefGoogle Scholar
  10. 10.
    Kumar, A., Rabe, U., Hirsekorn, S., Arnold, W.: Elasticity mapping of precipitates in polycrystalline materials using atomic force acoustic microscopy. Appl. Phys. Lett. 92, 183106 (2008)CrossRefGoogle Scholar
  11. 11.
    Rabe, U.: Atomic force acoustic microscopy. In: Bushan, B., Fuchs, H. (eds.) Applied Scanning Probe Methods, vol. 2, pp. 37–90. Springer, Berlin (2006), and references contained thereinCrossRefGoogle Scholar
  12. 12.
    Turner, J.A., Hurley, D.C.: Ultrasonic methods in contact atomic force microscopy. In: Placko, D., Kundu, T. (eds.) Ultrasonic Methods for Material Characterization. Instrumentation, Mésure, Métrologie, vol. 3, pp. 117–148. Lavoisier, Cachan (2003), and references contained thereinGoogle Scholar
  13. 13.
    Stan, G., Cook, R.F.: Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy. Nanotechnology 19, 235701 (2008)CrossRefGoogle Scholar
  14. 14.
    Huya, P.A., Hurley, C.D., Turner, J.A.: Contact-resonance atomic force microscopy for viscoelasticity. J. Appl. Phys. 104, 074916 (2008)CrossRefGoogle Scholar
  15. 15.
    Caron, A., Arnold, W.: Observation of local internal friction and plasticity onset in nanocrystalline nickel by atomic force acoustic microscopy. Acta Mater. 57, 4353–4363 (2009)CrossRefGoogle Scholar
  16. 16.
    Scherer, V., Reinstädtler, M., Arnold, W.: Atomic force microscopy with lateral modulation. In: Fuchs, H., Bhushan, B., Hosaka, S. (eds.) Applied Scanning Probe Methods, pp. 75–150. Springer, Berlin (2003), and references contained thereinGoogle Scholar
  17. 17.
    Killgore, J.P., Yablon, D.G., Tsou, A.H., Gannepalli, A., Turner, J.R., Proksch, R., Hurley, D.C.: Viscoelastic property mapping with contact resonance force microscopy. Langmuir 27, 13983 (2011)CrossRefGoogle Scholar
  18. 18.
    Wagner, H., Büchsenschütz-Göbeler, M., Luo, Y., Kumar, A., Arnold, W., Samwer, K.: Measurement of local internal friction in metallic glasses. J. Appl. Phys. 115, 134307 (2014); Erratum: J. Appl. Phys. 115, 134307 (2014)CrossRefGoogle Scholar
  19. 19.
    Mazeran, P.E., Loubet, J.L.: Normal and lateral modulation with a scanning force microscope, an analysis: implication in quantitative elastic and friction imaging. Tribol. Lett. 7, 199–212 (1999)CrossRefGoogle Scholar
  20. 20.
    Vlassak, J.J., Nix, W.D.: Indentation modulus of elastically anisotropic half-spaces. Philos. Mag. A67, 1045–1056 (1993)CrossRefGoogle Scholar
  21. 21.
    Stan, G., Price, W.: Quantitative measurements of indentation moduli by atomic force acoustic microscopy using a dual reference method. Rev. Sci. Instrum. 77, 103707 (2006)CrossRefGoogle Scholar
  22. 22.
    Wagner, H., Bedorf, D., Küchemann, S., Schwabe, M., Zhang, B., Arnold, W., Samwer, K.: Local elastic properties of a metallic glass. Nat. Mater. 10(6), 1–4 (2012). doi:10.1038/nmat3024Google Scholar
  23. 23.
    Yamanaka, K., Ogiso, H., Kolosov, O.: Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64, 178–180 (1994)CrossRefGoogle Scholar
  24. 24.
    Muraoka, M., Arnold, W.: A method to evaluate local elasticity and adhesion energy based on nonlinear response of AFM cantilever vibration. JSME Int. J. A44, 396–405 (2001)CrossRefGoogle Scholar
  25. 25.
    Vairac, P., Boucenna, R., Le Rouzic, J., Cretin, B.: Scanning microdeformation microscopy: experimental investigations on non-linear contact spectroscopy. J. Phys. D Appl. Phys. 41, 155503 (2008), and references contained thereinCrossRefGoogle Scholar
  26. 26.
    Cuberes, M.T.: Nanoscale friction and ultrasound. In: Gnecco, E., Meyer, E. (eds.) Fundamentals of Friction and Wear, pp. 49–71. Springer, Berlin (2007), and references contained thereinCrossRefGoogle Scholar
  27. 27.
    Yaralioglu, G.G., Degertekin, F.L., Crozier, K.B., Quate, C.F.: Contact stiffness of layered materials for ultrasonic force microscopy. J. Appl. Phys. 87, 7491–7496 (2000)CrossRefGoogle Scholar
  28. 28.
    Hurley, D.C., Kopycinska-Müller, M., Langlois, E.D., Kos, A.B.., Barbosa III, N.: Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy. Appl. Phys. Lett. 89, 021911 (2006)CrossRefGoogle Scholar
  29. 29.
    Striegler, A., Koehler, B., Bendjus, B., Roellig, M., Kopycinska-Mueller, M., Meyendorf, N.: Detection of buried reference structures by use of atomic force acoustic microscopy. Ultramicroscopy 111, 1405–1416 (2011)CrossRefGoogle Scholar
  30. 30.
    Shekhawat, G.S., Dravid, V.P.: Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310, 89–92 (2005)CrossRefGoogle Scholar
  31. 31.
    Hu, S., Su, C., Arnold, W.: Imaging of subsurface structures using atomic force acoustic microscopy at GHz frequencies. J. Appl. Phys. 109, 084324 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Material Science and TechnologySaarland UniversitySaarbrückenGermany
  2. 2.1. Physikalisches InstitutGöttingen UniversityGöttingenGermany