Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nanotechnology Applications in Polymerase Chain Reaction (PCR)

  • Kuo-Sheng Ma
  • Yingnan Ma
  • Fred Chiou
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_356-2



Polymerase chain reaction (PCR) is the most prevalent technology used in modern molecular biology research. Generally, it is a technique to amplify the amount of a piece of DNA with a specific sequence. Although the PCR technique is mature, improvement of its efficiency is still an emerging area of research. Recently, nanotechnology is getting more attention in this application. Several nanometer-sized materials such as carbon nanotubes, gold nanoparticles, quantum dots, and metal oxide nanoparticles have been employed.


The polymerase chain reaction (PCR) technique is a series of chemical processes to exponentially amplify the number of a specific DNA sequence, producing hundreds of thousands of copies of DNA from a low original sample concentration. This revolutionary technique was first developed by Dr. Kary Mullis in 1983 [1]. Since then, it has been broadly utilized in medical, biomedical,...


Polymerase Chain Reaction TiO2 Nanoparticles Polymerase Chain Reaction Technique Conventional Polymerase Chain Reaction Mercaptoacetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Mullis, K., et al.: Specific enzymatic amplification of DNA in vitro – the polymerase chain-reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273 (1986)CrossRefGoogle Scholar
  2. 2.
    Saiki, R.K., et al.: Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230(4732), 1350–1354 (1985)CrossRefGoogle Scholar
  3. 3.
    Saiki, R.K., et al.: Primer-directed enzymatic amplification of DNA with a thermostable DNA-polymerase. Science 239(4839), 487–491 (1988)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Kellogg, D.E., Sninsky, J.J., Kwok, S.: Quantitation of HIV-1 proviral DNA relative to cellular DNA by the polymerase chain-reaction. Anal. Biochem. 189(2), 202–208 (1990)CrossRefGoogle Scholar
  6. 6.
    Mackay, I.M., Arden, K.E., Nitsche, A.: Real-time PCR in virology. Nucleic Acids Res. 30(6), 1292–1305 (2002)CrossRefGoogle Scholar
  7. 7.
    Stemmer, W.P.C., et al.: Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164(1), 49–53 (1995)CrossRefGoogle Scholar
  8. 8.
    Vincent, M., Xu, Y., Kong, H.M.: Helicase-dependent isothermal DNA amplification. EMBO Rep. 5(8), 795–800 (2004)CrossRefGoogle Scholar
  9. 9.
    Chou, Q., et al.: Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 20(7), 1717–1723 (1992)CrossRefGoogle Scholar
  10. 10.
    Herman, J.G., et al.: Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. U. S. A. 93(18), 9821–9826 (1996)CrossRefGoogle Scholar
  11. 11.
    Newton, C.R., et al.: Analysis of any point mutation in DNA – the amplification refractory mutation system (arms). Nucleic Acids Res. 17(7), 2503–2516 (1989)CrossRefGoogle Scholar
  12. 12.
    Bing, D.H., Sawosik, T.M., Word, C.J.: Assay performance results with the AmpliType(R) PM PCR amplification and typing kit. Crime Lab. Dig. 23(2), 27–45 (1996)Google Scholar
  13. 13.
    Khan, Z., Poetter, K., Park, D.J.: Enhanced solid phase PCR: mechanisms to increase priming by solid support primers. Anal. Biochem. 375(2), 391–393 (2008)CrossRefGoogle Scholar
  14. 14.
    Cui, D.X., et al.: Effects of single-walled carbon nanotubes on the polymerase chain reaction. Nanotechnology 15(1), 154–157 (2004)CrossRefGoogle Scholar
  15. 15.
    Zhang, Z.Z., et al.: Aqueous suspension of carbon nanotubes enhances the specificity of long PCR. Biotechniques 44(4), 537–545 (2008)CrossRefGoogle Scholar
  16. 16.
    Shi, X.Y., et al.: Effect of surface charge of polyethyleneimine-modified multiwalled carbon nanotubes on the improvement of polymerase chain reaction. Nanoscale 3(4), 1741–1747 (2011)CrossRefGoogle Scholar
  17. 17.
    Yi, C.Q., et al.: Interactions between carbon nanotubes and DNA polymerase and restriction endonucleases. Nanotechnology 18(2), 6 (2007)CrossRefGoogle Scholar
  18. 18.
    Li, H.K., et al.: Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. Angew. Chem. Int. Ed. 44(32), 5100–5103 (2005)CrossRefGoogle Scholar
  19. 19.
    Pan, J.K., et al.: Nanogold-assisted multi-round polymerase to chain reaction (PCR). J. Nanosci. Nanotechnol. 7(12), 4428–4433 (2007)CrossRefGoogle Scholar
  20. 20.
    Li, M., et al.: Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Res. 33(21), 10 (2005)CrossRefGoogle Scholar
  21. 21.
    Yuan, L.F., He, Y.J.: Effect of surface charge of PDDA-protected gold nanoparticles on the specificity and efficiency of DNA polymerase chain reaction. Analyst 138(2), 539–545 (2013)CrossRefGoogle Scholar
  22. 22.
    Shi, X.Y., et al.: Effect of the surface functional groups of dendrimer-entrapped gold nanoparticles on the improvement of PCR. Electrophoresis 33(16), 2598–2603 (2012)CrossRefGoogle Scholar
  23. 23.
    Shi, X.Y., et al.: A highly effective polymerase chain reaction enhancer based on dendrimer-entrapped gold nanoparticles. Analyst 137(1), 223–228 (2012)CrossRefGoogle Scholar
  24. 24.
    Haber, A.L., et al.: Addition of gold nanoparticles to real-time PCR: effect on PCR profile and SYBR Green I fluorescence. Anal. Bioanal. Chem. 392(5), 887–896 (2008)CrossRefGoogle Scholar
  25. 25.
    Vu, B.V., Litvinov, D., Willson, R.C.: Gold nanoparticle effects in polymerase chain reaction: favoring of smaller products by polymerase adsorption. Anal. Chem. 80(14), 5462–5467 (2008)CrossRefGoogle Scholar
  26. 26.
    Yang, W.C., et al.: Evaluation of gold nanoparticles as the additive in real-time polymerase chain reaction with SYBR green I dye. Nanotechnology 19(25), 9 (2008)Google Scholar
  27. 27.
    Wan, W.J., Yeow, J.T.W.: The effects of gold nanoparticles with different sizes on polymerase chain reaction efficiency. Nanotechnology 20(32), 5 (2009)CrossRefGoogle Scholar
  28. 28.
    Ma, L., et al.: Maximizing specificity and yield of PCR by the quantum dot itself rather than property of the quantum dot surface. Biochimie 91(8), 969–973 (2009)CrossRefGoogle Scholar
  29. 29.
    Wang, L.B., et al.: Effects of quantum dots in polymerase chain reaction. J. Phys. Chem. B 113(21), 7637–7641 (2009)CrossRefGoogle Scholar
  30. 30.
    Xun, Z., Zhao, X.Y., Guan, Y.F.: Improved thermal cycling durability and PCR compatibility of polymer coated quantum dot. Nanotechnology 24(35), 355504 (2013)CrossRefGoogle Scholar
  31. 31.
    Zhang, Z.Z., et al.: Quantum dots trigger hot-start effects for pfu-based polymerase chain reaction. J. Exp. Nanosci. 9(10), 1051–1063 (2014)CrossRefGoogle Scholar
  32. 32.
    Zhang, Z.Z., et al.: A hot start alternative for high-fidelity DNA polymerase amplification mediated by quantum dots. Acta Biochim. Biophys. Sin. 46(6), 502–511 (2014)CrossRefGoogle Scholar
  33. 33.
    Khaliq, A., et al.: Enhancement in the efficiency of polymerase chain reaction by TiO2 nanoparticles: crucial role of enhanced thermal conductivity. Nanotechnology 21(25), 11 (2010)CrossRefGoogle Scholar
  34. 34.
    Ventimiglia, G., Petralia, S., Barbuzzi, T.: Polymerase chain reaction efficiency improved by water soluble beta-cyclodextrins capped platinum nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 32(4), 848–850 (2012)CrossRefGoogle Scholar
  35. 35.
    Liang, Y., et al.: C-60 affects DNA replication in vitro by decreasing the melting temperature of DNA templates. Carbon 47(6), 1457–1465 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Electrical Mechatronics EngineeringSouthern Polytechnic State UniversityMariettaUSA
  2. 2.Department of Engineering TechnologyWeber State UniversityOgdenUSA