Skip to main content

Microcontact Printing

  • Living reference work entry
  • First Online:

Synonyms

Microcontact transfer; Molding; Replica molding; Soft lithography

Definition

Microcontact printing is a method of transferring patterns of various materials such as polymers, proteins, nanoparticles, etc., onto another surface. Typically a polydimethylsiloxane (PDMS) stamp is dipped in a solution of a material that has to be patterned and is brought into contact with the surface. Transfer of micrometer (μm)/nanometer (nm)-size patterns is possible by this technique.

Overview of Microcontact Printing

Optical lithography is a fundamental step in microfabrication technology. Almost all integrated circuits are fabricated using a standard lithography process to achieve scalable manufacturing at low cost. However, this method has some shortcomings of compatibility issues, and it cannot be used for substrates that are not flat. Furthermore, the top-down lithography process cannot be easily integrated with labile biological systems because removal of photoresist from the polymers or...

This is a preview of subscription content, log in via an institution.

References

  1. Zhao, X.M., Xia, Y., Whitesides, G.M.: Fabrication of three dimensional micro-structures: microtransfer molding. Adv. Mater. 8, 837–840 (1996)

    Article  Google Scholar 

  2. Madou, M.J.: Fundamentals of Microfabrication: The Science of Miniaturization. CRC Press, Boca Raton (2002)

    Google Scholar 

  3. Pompe, T., Fery, A., Herminghaus, S., Kriele, A., Lorenz, H., Kotthaus, J.P.: Submicron contact printing on silicon using stamp pads. Langmuir 15, 2398–2401 (1999)

    Article  Google Scholar 

  4. Xiao, P.F., He, N.Y., Liu, Z.C., He, Q.G., Sun, X., Lu, Z.H.: In situ synthesis of oligonucleotide arrays by using soft lithography. Nanotechnology 13, 756 (2002)

    Article  Google Scholar 

  5. Decré, M.M.J., Schneider, R., Burdinski, D., Schellekens, J., Saalmink, M., Dona, R.: Wave printing (I): towards large-area, multilayer microcontact printing. In: Materials Research Society Symposium Proceedings, Boston, pp. 59–61 (2004)

    Google Scholar 

  6. Jackman, R.J., Wilbur, J.L., Whitesides, G.M.: Fabrication of submicrometer features on curved substrates by microcontact printing. Science 269, 664 (1995)

    Article  Google Scholar 

  7. Qin, D., Xia, Y., Whitesides, G.M.: Rapid prototyping of complex structures with feature sizes larger than 20 μm. Adv. Mater. 8, 917 (1996)

    Article  Google Scholar 

  8. Kang, H.W., Leem, J., Ko, S.H., Yoon, S.Y., Sung, H.Y.: Vacuum-assisted microcontact printing (mCP) for aligned patterning of nano and biochemical materials. J. Mater. Chem. C 1, 268 (2013)

    Article  Google Scholar 

  9. Lauer, L., Klein, C., Offenhäusser, A.: Spot compliant neuronal networks by structure optimized micro-contact printing. Biomaterials 22, 1925–1932 (2001)

    Article  Google Scholar 

  10. Odom, T.W., Love, J.C., Wolfe, D.B., Paul, K.E., Whitesides, G.M.: Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314–5320 (2002)

    Article  Google Scholar 

  11. Trimbach, D.C., Stapert, H., van Orselen, J., Jandt, K.D., Bastiaansen, C.W.M., Broer, D.J.: Improved microcontact printing of proteins using hydrophilic thermoplastic elastomers as stamp materials. Adv. Eng. Mater. 9, 1123–1128 (2007)

    Article  Google Scholar 

  12. Yoo, P.J., Choi, S.J., Kim, J.H., Suh, D., Baek, S.J., Kim, T.W., Lee, H.H.: Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing. Chem. Mater. 16, 5000–5005 (2004)

    Article  Google Scholar 

  13. Schmid, H., Michel, B.: Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33, 3042–3049 (2000)

    Article  Google Scholar 

  14. Kumar, A., Whitesides, G.M.: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004 (1993)

    Article  Google Scholar 

  15. Ruiz, S.A., Chen, C.S.: Microcontact printing: a tool to pattern. Soft Matter 3, 168–177 (2007)

    Article  Google Scholar 

  16. Xia, Y., Zhao, X.-M., Whitesides, G.M.: Pattern transfer: self-assembled monolayers as ultrathin resists. Microelectron. Eng. 32, 255 (1996)

    Article  Google Scholar 

  17. Xia, Y., Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Sci. 28, 153 (1998)

    Article  Google Scholar 

  18. Guo, L.J.: Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495 (2007)

    Article  Google Scholar 

  19. Wang, J., Schablitsky, S., Zhaoning, Y., Wei, W., Chou, S.: Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography. J. Vac. Sci. Technol. B 17, 2957 (1999)

    Article  Google Scholar 

  20. Seekamp, J., Zankovych, S., et al.: Nanoimprinted passive optical devices. Nanotechnology 13, 581 (2002)

    Article  Google Scholar 

  21. Wilbur, J.L., Kim, E., Xia, Y., Whitesides, G.M.: Lithographic molding: a convenient route to structures with sub-micrometer dimensions. Adv. Mater. 7, 649 (1995)

    Article  Google Scholar 

  22. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X.: Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001)

    Article  Google Scholar 

  23. Bernard, A., Renault, J.P., Michel, B., Bosshard, H.R., Delamarche, E.: Microcontact printing of proteins. Adv. Mater. 12, 1067–1070 (2000)

    Article  Google Scholar 

  24. Kwak, S.K., Lee, G.S., Ahn, D.J., Choi, J.W.: Pattern formation of cytochrome c by microcontact printing and dip-pen nanolithography. Mater. Sci. Eng. C 24, 151–155 (2004)

    Article  Google Scholar 

  25. Blinka, E., Loeffler, K., Hu, Y., Gopal, A., Hoshino, K., Lin, K., Liu, X., Ferrari, M., Zhang, X.J.: Enhanced microcontact printing of proteins on nanoporous silica surface. IOP Nanotechnol. 21, 415302 (2010)

    Article  Google Scholar 

  26. Yang, Z., Chilkoti, A.: Microstamping of a biological ligand onto an activated polymer surface. Adv. Mater. 12, 413–417 (2000)

    Article  Google Scholar 

  27. Lange, S.A., Benes, V., Kern, D.P., Hörber, J.K.H., Bernard, A.: Microcontact printing of DNA molecules. Anal. Chem. 76, 1641–1647 (2004)

    Article  Google Scholar 

  28. Singhvi, R., Kumar, A., Lopez, G.P., Stephanopoulos, G.N., Wang, D.I., Whitesides, G.M., Ingber, D.E.: Engineering cell shape and function. Science 264, 696 (1994)

    Article  Google Scholar 

  29. Santhanam, V., Andres, R.P.: Microcontact printing of uniform nanoparticle arrays. Nano Lett. 4, 41–44 (2004)

    Article  Google Scholar 

  30. Steckel, J.S., Snee, P., Coe-Sullivan, S., Zimmer, J.P., Halpert, J.E., Anikeeva, P., Kim, L.A., Bulovic, V., Bawendi, M.G.: Color-saturated green-emitting QD-LEDs. Angew. Chem. 118, 5928–5931 (2006)

    Article  Google Scholar 

  31. Kim, L.A., Anikeeva, P.O., Coe-Sullivan, S.A., Steckel, J.S., Bawendi, M.G., Bulovic, V.: Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513–4517 (2008)

    Article  Google Scholar 

  32. Gopal, A., Hoshino, K., Kim, S., Zhang, X.: Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Nanotechnology 20, 235201 (2009)

    Article  Google Scholar 

  33. Hoshino, K., Turner, T.C., Kim, S., Gopal, A., Zhang, X.: Single molecular stamping of a sub-10-nm colloidal quantum dot array. Langmuir 24, 13804–13808 (2008)

    Article  Google Scholar 

  34. Jana, N.R., Gearheart, L., Murphy, C.J.: Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389–1393 (2001)

    Article  Google Scholar 

  35. Wang, C.H., Wong, A.S.W., Ho, G.W.: Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir 23, 11960–11963 (2007)

    Article  Google Scholar 

  36. Kaufmann, T., Ravoo, B.J.: Stamps, inks and substrates: polymers in microcontact printing. Polym. Chem. 1, 317–381 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauri Bhave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Bhave, G., Gopal, A., Hoshino, K., Zhang, J.X. (2015). Microcontact Printing. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_337-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_337-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics