Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Microcontact Printing

  • Gauri Bhave
  • Ashwini Gopal
  • Kazunori Hoshino
  • John Xiaojing Zhang
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_337-2

Synonyms

Definition

Microcontact printing is a method of transferring patterns of various materials such as polymers, proteins, nanoparticles, etc., onto another surface. Typically a polydimethylsiloxane (PDMS) stamp is dipped in a solution of a material that has to be patterned and is brought into contact with the surface. Transfer of micrometer (μm)/nanometer (nm)-size patterns is possible by this technique.

Overview of Microcontact Printing

Optical lithography is a fundamental step in microfabrication technology. Almost all integrated circuits are fabricated using a standard lithography process to achieve scalable manufacturing at low cost. However, this method has some shortcomings of compatibility issues, and it cannot be used for substrates that are not flat. Furthermore, the top-down lithography process cannot be easily integrated with labile biological systems because removal of photoresist from the polymers or...

Keywords

Soft Lithography PDMS Surface Nanoimprint Lithography Microcontact Printing PDMS Stamp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. 1.
    Zhao, X.M., Xia, Y., Whitesides, G.M.: Fabrication of three dimensional micro-structures: microtransfer molding. Adv. Mater. 8, 837–840 (1996)CrossRefGoogle Scholar
  2. 2.
    Madou, M.J.: Fundamentals of Microfabrication: The Science of Miniaturization. CRC Press, Boca Raton (2002)Google Scholar
  3. 3.
    Pompe, T., Fery, A., Herminghaus, S., Kriele, A., Lorenz, H., Kotthaus, J.P.: Submicron contact printing on silicon using stamp pads. Langmuir 15, 2398–2401 (1999)CrossRefGoogle Scholar
  4. 4.
    Xiao, P.F., He, N.Y., Liu, Z.C., He, Q.G., Sun, X., Lu, Z.H.: In situ synthesis of oligonucleotide arrays by using soft lithography. Nanotechnology 13, 756 (2002)CrossRefGoogle Scholar
  5. 5.
    Decré, M.M.J., Schneider, R., Burdinski, D., Schellekens, J., Saalmink, M., Dona, R.: Wave printing (I): towards large-area, multilayer microcontact printing. In: Materials Research Society Symposium Proceedings, Boston, pp. 59–61 (2004)Google Scholar
  6. 6.
    Jackman, R.J., Wilbur, J.L., Whitesides, G.M.: Fabrication of submicrometer features on curved substrates by microcontact printing. Science 269, 664 (1995)CrossRefGoogle Scholar
  7. 7.
    Qin, D., Xia, Y., Whitesides, G.M.: Rapid prototyping of complex structures with feature sizes larger than 20 μm. Adv. Mater. 8, 917 (1996)CrossRefGoogle Scholar
  8. 8.
    Kang, H.W., Leem, J., Ko, S.H., Yoon, S.Y., Sung, H.Y.: Vacuum-assisted microcontact printing (mCP) for aligned patterning of nano and biochemical materials. J. Mater. Chem. C 1, 268 (2013)CrossRefGoogle Scholar
  9. 9.
    Lauer, L., Klein, C., Offenhäusser, A.: Spot compliant neuronal networks by structure optimized micro-contact printing. Biomaterials 22, 1925–1932 (2001)CrossRefGoogle Scholar
  10. 10.
    Odom, T.W., Love, J.C., Wolfe, D.B., Paul, K.E., Whitesides, G.M.: Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314–5320 (2002)CrossRefGoogle Scholar
  11. 11.
    Trimbach, D.C., Stapert, H., van Orselen, J., Jandt, K.D., Bastiaansen, C.W.M., Broer, D.J.: Improved microcontact printing of proteins using hydrophilic thermoplastic elastomers as stamp materials. Adv. Eng. Mater. 9, 1123–1128 (2007)CrossRefGoogle Scholar
  12. 12.
    Yoo, P.J., Choi, S.J., Kim, J.H., Suh, D., Baek, S.J., Kim, T.W., Lee, H.H.: Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing. Chem. Mater. 16, 5000–5005 (2004)CrossRefGoogle Scholar
  13. 13.
    Schmid, H., Michel, B.: Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33, 3042–3049 (2000)CrossRefGoogle Scholar
  14. 14.
    Kumar, A., Whitesides, G.M.: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004 (1993)CrossRefGoogle Scholar
  15. 15.
    Ruiz, S.A., Chen, C.S.: Microcontact printing: a tool to pattern. Soft Matter 3, 168–177 (2007)CrossRefGoogle Scholar
  16. 16.
    Xia, Y., Zhao, X.-M., Whitesides, G.M.: Pattern transfer: self-assembled monolayers as ultrathin resists. Microelectron. Eng. 32, 255 (1996)CrossRefGoogle Scholar
  17. 17.
    Xia, Y., Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Sci. 28, 153 (1998)CrossRefGoogle Scholar
  18. 18.
    Guo, L.J.: Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495 (2007)CrossRefGoogle Scholar
  19. 19.
    Wang, J., Schablitsky, S., Zhaoning, Y., Wei, W., Chou, S.: Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography. J. Vac. Sci. Technol. B 17, 2957 (1999)CrossRefGoogle Scholar
  20. 20.
    Seekamp, J., Zankovych, S., et al.: Nanoimprinted passive optical devices. Nanotechnology 13, 581 (2002)CrossRefGoogle Scholar
  21. 21.
    Wilbur, J.L., Kim, E., Xia, Y., Whitesides, G.M.: Lithographic molding: a convenient route to structures with sub-micrometer dimensions. Adv. Mater. 7, 649 (1995)CrossRefGoogle Scholar
  22. 22.
    Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X.: Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001)CrossRefGoogle Scholar
  23. 23.
    Bernard, A., Renault, J.P., Michel, B., Bosshard, H.R., Delamarche, E.: Microcontact printing of proteins. Adv. Mater. 12, 1067–1070 (2000)CrossRefGoogle Scholar
  24. 24.
    Kwak, S.K., Lee, G.S., Ahn, D.J., Choi, J.W.: Pattern formation of cytochrome c by microcontact printing and dip-pen nanolithography. Mater. Sci. Eng. C 24, 151–155 (2004)CrossRefGoogle Scholar
  25. 25.
    Blinka, E., Loeffler, K., Hu, Y., Gopal, A., Hoshino, K., Lin, K., Liu, X., Ferrari, M., Zhang, X.J.: Enhanced microcontact printing of proteins on nanoporous silica surface. IOP Nanotechnol. 21, 415302 (2010)CrossRefGoogle Scholar
  26. 26.
    Yang, Z., Chilkoti, A.: Microstamping of a biological ligand onto an activated polymer surface. Adv. Mater. 12, 413–417 (2000)CrossRefGoogle Scholar
  27. 27.
    Lange, S.A., Benes, V., Kern, D.P., Hörber, J.K.H., Bernard, A.: Microcontact printing of DNA molecules. Anal. Chem. 76, 1641–1647 (2004)CrossRefGoogle Scholar
  28. 28.
    Singhvi, R., Kumar, A., Lopez, G.P., Stephanopoulos, G.N., Wang, D.I., Whitesides, G.M., Ingber, D.E.: Engineering cell shape and function. Science 264, 696 (1994)CrossRefGoogle Scholar
  29. 29.
    Santhanam, V., Andres, R.P.: Microcontact printing of uniform nanoparticle arrays. Nano Lett. 4, 41–44 (2004)CrossRefGoogle Scholar
  30. 30.
    Steckel, J.S., Snee, P., Coe-Sullivan, S., Zimmer, J.P., Halpert, J.E., Anikeeva, P., Kim, L.A., Bulovic, V., Bawendi, M.G.: Color-saturated green-emitting QD-LEDs. Angew. Chem. 118, 5928–5931 (2006)CrossRefGoogle Scholar
  31. 31.
    Kim, L.A., Anikeeva, P.O., Coe-Sullivan, S.A., Steckel, J.S., Bawendi, M.G., Bulovic, V.: Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513–4517 (2008)CrossRefGoogle Scholar
  32. 32.
    Gopal, A., Hoshino, K., Kim, S., Zhang, X.: Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Nanotechnology 20, 235201 (2009)CrossRefGoogle Scholar
  33. 33.
    Hoshino, K., Turner, T.C., Kim, S., Gopal, A., Zhang, X.: Single molecular stamping of a sub-10-nm colloidal quantum dot array. Langmuir 24, 13804–13808 (2008)CrossRefGoogle Scholar
  34. 34.
    Jana, N.R., Gearheart, L., Murphy, C.J.: Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389–1393 (2001)CrossRefGoogle Scholar
  35. 35.
    Wang, C.H., Wong, A.S.W., Ho, G.W.: Facile solution route to vertically aligned, selective growth of ZnO nanostructure arrays. Langmuir 23, 11960–11963 (2007)CrossRefGoogle Scholar
  36. 36.
    Kaufmann, T., Ravoo, B.J.: Stamps, inks and substrates: polymers in microcontact printing. Polym. Chem. 1, 317–381 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Gauri Bhave
    • 1
  • Ashwini Gopal
    • 1
  • Kazunori Hoshino
    • 2
  • John Xiaojing Zhang
    • 3
  1. 1.Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Department of Biomedical EngineeringUniversity of ConnecticutStorrsUSA
  3. 3.Thayer School of EngineeringDartmouth CollegeHanoverUSA