Skip to main content

Fate of Manufactured Nanoparticles in Aqueous Environment

  • Living reference work entry
  • First Online:

Synonyms

Aging; Alteration; Dispersion; Environmental impact; Life cycle; Titanium dioxide; Transfer

Definition

Manufactured nanoparticle. Manufactured nanoparticles are particles that have at least one dimension between 1 and 100 nm and are specifically engineered to have unique properties that do not exist in bulk materials with an identical composition.

Nanomaterial. A nanomaterial is a material that contains structured components with at least one dimension below 100 nm. These “nano-components” can be a solid (nanoparticle), liquid (nano-droplet), or gas (nanoporosity) phase, distributed in the material. A nanomaterial has no maximum size limit.

Nanoproduct. A nanoproduct is a commercial product that contains nanomaterial.

Colloid. A colloid is a material distributed in a dispersing medium, which is more submitted to Brownian random motion than to gravity attraction. Colloids typically have at least one dimension below 1 μm. They look homogeneous when observed by the naked eye.

Introduction...

This is a preview of subscription content, log in via an institution.

References

  1. Nanowerk database on nanomaterials, nanotechnology products and related companies and laboratories. http://nanowerk.com

  2. Woodrow Wilson Institute: Inventory of manufacturer-identified nanotechnology-based consumer products introduced to the market. http://nanotechproject.org

  3. Health and Consumer Protection Directorate General of the European Commission: Nanotechnologies, a preliminary risk analysis on the basis of a workshop, Brussels (2004)

    Google Scholar 

  4. U.S. Environmental Protection Agency: Nanotechnology white paper. Nanotechnology Workgroup, Science Policy Council, Washington, DC (2005)

    Google Scholar 

  5. SCENIHR: Opinion on the Appropriateness of Existing Methodologies to Assess the Potential Risks Associated with Engineered and Adventitious Products of Nanotechnologies, pp. 41–58. Health and Consumer Protection Directorate General of the European Commission, Brussels (2005)

    Google Scholar 

  6. United Nations Environment Programme: Chapter 7: Emerging challenges-nanotechnology and the environment. In: Geo Year Book 2007, United Nations Environment Programme Division of Early Warning and Assessment, Nairobi. http://unep.Org/geo/yearbook/yb2007/pdf/gyb2007_english_full.Pdf (2007)

  7. Robichaud, C., Uyar, A., Darby, M., Zucker, L., Wiesner, M.: Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci. Technol. 43, 4227–4233 (2009)

    Article  Google Scholar 

  8. EWG: Sunscreen investigation. Section 4 nanotechnology and sunscreens. Environmental Working Group (2009), Washington, DC, http://www.ewg.org/2014sunscreen/

  9. Senjen, R.: Nanomaterials – health and environmental concerns. In: Nanotechnologies in the 21st Century. EEB, Brussels (2009)

    Google Scholar 

  10. Wijnhoven, S.W.P., Dekkers, S., Hagens, W.I., De Jong, W.H.: Exposure to nanomaterials in consumer products. Letter report. RIVM, National Institute for Public Health and the Environment, The Netherlands (2009)

    Google Scholar 

  11. Kaegi, R., Ulrich, A., Sinnet, B., et al.: Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 156(2), 233–239 (2008)

    Article  Google Scholar 

  12. Kiser, M.A., Westerhoff, P., Benn, T., Wang, Y., Pérez-Rivera, J., Hristovski, K.: Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 43(17), 6757–6763 (2009)

    Article  Google Scholar 

  13. Reijnders, L.: The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym. Degrad. Stab. 94(5), 873–876 (2009)

    Article  Google Scholar 

  14. Wijnhoven, S.W.P., Dekkers, S., Kooi, M. et al.: RIVM report 2011 Nanomaterials in consumer products – Update of products on the European market in 2010, Report 340370003 (2010)

    Google Scholar 

  15. Som, C., Berges, M., Chaudhry, Q., et al.: The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269(2–3), 160–169 (2010)

    Article  Google Scholar 

  16. Brant, J., Labille, J., Wiesner, M., Rose, J., Bottero, J.Y.: Nanomaterials transport and fate in the environment. In: Wiesner, M., Bottero, J.-Y. (eds.) Environmental Nanotechnology Applications, and Impact of Nanomaterials. McGraw Hill, New York (2007)

    Google Scholar 

  17. Labille, J., Brant, J.: Stability of nanoparticles in water. Nanomedicine 5(6), 985–998 (2010)

    Article  Google Scholar 

  18. Solovitch-Vella, N., Labille, J., Rose, J., et al.: Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ. Sci. Technol. 44(13), 4897–4902 (2010)

    Article  Google Scholar 

  19. Labille, J., Feng, J., Botta, C., et al.: Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation residues in aqueous environment. Environ. Pollut. 158(12), 3482–3489 (2010)

    Article  Google Scholar 

  20. Auffan, M., Pedeutour, M., Rose, J., et al.: Surface structural degradation of tio2-based nanomaterial used in cosmetics. Environ. Sci. Technol. 44(7), 2689–2694 (2010)

    Article  Google Scholar 

  21. Botta, C., Labille, J., Auffan, M., et al.: TiO2-based nanoparticles released in water from commercialized sunscreens in a life cycle perspective: structures and quantities. Environ. Pollut. 159, 1543–1550 (2011)

    Article  Google Scholar 

  22. Jolivet, J.P., Froidefond, C., Pottier, A., et al.: Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J. Mater. Chem. 14(21), 3281–3288 (2004)

    Article  Google Scholar 

  23. Labille, J., Thomas, F., Bihannic, I., Santaella, C.: Destabilization of montmorillonite suspensions by Ca2+ and succinoglycan. Clay Miner. 38(2), 173–185 (2003)

    Article  Google Scholar 

  24. Gottschalk, F., Sun, T., Nowack, B.: Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ. Pollut. 181, 287–300 (2013)

    Article  Google Scholar 

  25. NANOHETER: SIINN Research Program (2013–2016) the ERA-NET on Nanosafety for a Safe Implementation of Innovative Nanoscience and Nanotechnology; Heteroaggregation of manufactured nanoparticles with naturally occurring colloids in surface water. http://nanoheter.cerege.fr (2015)

  26. Praetorius, A., Labille, J., Scheringer, M., et al.: Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions. Environ. Sci. Technol. 48, 10690–10698 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Labille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Labille, J., Pelinovskaya, N., Botta, C., Bottero, JY., Masion, A. (2014). Fate of Manufactured Nanoparticles in Aqueous Environment. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_333-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_333-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics