Skip to main content

Imaging the Human Body Down to the Molecular Level

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Three-dimensional imaging of human tissues

Definition

The human body consists of nanometer-sized units including proteins, apatite crystallites, collagen, and myelin fibers. Imaging, here, means the identification, localization, and quantification of these units within the human body.

Overview

The human body consists of about 1027 molecules. This number is so huge that it is impossible to determine their location or even only to store this amount of data. Using a logarithmic scale (see Fig. 1), one realizes that a biological cell with an extension of about 10 μm includes as many molecules like the human body biological cells. Even the number of cells within the human body is huge and beyond our imagination. The number of stars in the Milky Way, for example, is thousand times smaller than this number. Therefore, for imaging the human body on the nanometer scale, one has to restrict to predefined parts of the body or to take advantage of symmetries or periodicities as known...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lareida, A., Beckmann, F., Schrott-Fischer, A., Glueckert, R., Freysinger, W., Müller, B.: High-resolution X-ray tomography of the human inner ear: synchrotron radiation-based study of nerve fiber bundles, membranes, and ganglion cells. J. Microsc. 234, 95–102 (2009)

    Article  Google Scholar 

  2. Schulz, G., Weitkamp, T., Zanette, I., Pfeiffer, F., Beckmann, F., David, C., Rutishauser, S., Reznikova, E., Müller, B.: High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating based phase contrast. J. R. Soc. Interface 7, 1665–1676 (2010)

    Article  Google Scholar 

  3. Guinier, A., Fournet, G.: Small Angle Scattering of X-Rays. Wiley, New York (1955)

    Google Scholar 

  4. Weitkamp, T., Diaz, A., David, C., Pfeiffer, F., Stampanoni, M., Cloetens, P., Ziegler, E.: X-ray phase imaging with a grating interferometer. Opt. Express 13, 6296–6304 (2005)

    Article  Google Scholar 

  5. Weitkamp, T., David, C., Kottler, C., Bunk, O., Pfeiffer, F.: Tomography with grating interferometers at low-brilliance sources. Proc. SPIE 6318, 63180S (2006)

    Google Scholar 

  6. Heinrich, B., Bergamaschi, A., Brönnimann, C., Dinapoli, R., Eikenberry, E.F., Jhonson, I., Kobas, M., Kraft, P., Mozzanica, A.: PILATUS: a single photon counting pixel detector for X-ray applications. Nucl. Instrum. Methods Phys. Res. A 607, 247–249 (2009)

    Article  Google Scholar 

  7. Bunk, O., Bech, M., Jensen, T.H., Feidenhans’l, R., Binderup, T., Menzel, A., Pfeiffer, F.: Multimodal x-ray scatter imaging. New J. Phys. 11, 123016 (2009)

    Article  Google Scholar 

  8. Weitkamp, T., Tafforeau, P., Boller, E., Cloetens, P., Valade, J.-P., Bernard, P., Peyrin, F., Ludwig, W., Helfen, L., Baruchel, J.: Status and evolution of the ESRF beamline ID19. AIP Conf. Proc. 1221, 33–38 (2010)

    Article  Google Scholar 

  9. Müller, B., Deyhle, H., Bradley, D., Farquharson, M., Schulz, G., Müller-Gerbl, M., Bunk, O.: Scanning x-ray scattering: evaluating the nanostructure of human tissues. Eur. J. Nanomed. 3, 30–33 (2010)

    Article  Google Scholar 

  10. Deyhle, H., Bunk, O., Müller, B.: Nanostructure of healthy and caries-affected human teeth. Nanomedicine 7, 694–701 (2011)

    Google Scholar 

  11. Deyhle, H., White, S.N., Bunk, O., Beckmann, F., Müller, B.: Nanostructure of the carious tooth enamel lesion. Acta Biomater. 10, 355–364 (2014)

    Article  Google Scholar 

  12. Gaiser, S., Deyhle, H., Bunk, O., White, S.N., Müller, B.: Understanding nano-anatomy of healthy and carious human teeth: a prerequisite for nanodentistry. Biointerphases 7, 4 (2012)

    Article  Google Scholar 

  13. Georgiadis, M., Guizar-Sicairos, M., Zwahlen, A., Trüssel, A.J., Bunk, O., Müller, R., Schneider, P.: 3D scanning SAXS: a novel method for the assessment of bone ultrastructure orientation. Bone 71, 42–52 (2015)

    Article  Google Scholar 

  14. Liebi, M., Georgiadis, M., Menzel, A., Schneider, P., Kohlbrecher, J., Bunk, O., Guizar-Sicairos, M.: Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography. Nature 527, 349–352 (2015)

    Article  Google Scholar 

  15. Malecki, A., Potdevin, G., Biernath, T., Eggl, E., Willer, K., Lasser, T., Maisenbacher, J., Gibmeier, J., Wanner, A., Pfeiffer, F.: X-ray tensor tomography. Europhys. Lett. 105, 38002 (2014)

    Article  Google Scholar 

  16. Schaff, F., Bech, M., Zaslansky, P., Jud, C., Liebi, M., Guizar-Sicairos, M., Pfeiffer, F.: Six-dimensional real and reciprocal space small-angle X-ray scattering tomography. Nature 527, 353–356 (2015)

    Article  Google Scholar 

  17. Mülle, B.: Biomimetics and medical implementations. In: Bar-Cohen, Y. (ed.) Biomimetics: Nature-Based Innovation. Taylor & Francis Group, Boca Raton (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Deyhle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Deyhle, H., Schulz, G., Müller, B. (2016). Imaging the Human Body Down to the Molecular Level. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_326-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_326-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics