Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Imaging the Human Body Down to the Molecular Level

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_326-2

Synonyms

Definition

The human body consists of nanometer-sized units including proteins, apatite crystallites, collagen, and myelin fibers. Imaging, here, means the identification, localization, and quantification of these units within the human body.

Overview

The human body consists of about 10 27 molecules. This number is so huge that it is impossible to determine their location or even only to store this amount of data. Using a logarithmic scale (see Fig. 1), one realizes that a biological cell with an extension of about 10 μm includes as many molecules like the human body biological cells. Even the number of cells within the human body is huge and beyond our imagination. The number of stars in the Milky Way, for example, is thousand times smaller than this number. Therefore, for imaging the human body on the nanometer scale, one has to restrict to predefined parts of the body or to take advantage of symmetries or periodicities as known...

Keywords

Gray Matter Fringe Pattern Insertion Device Clinical Compute Tomography Tooth Hard Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. 1.
    Lareida, A., Beckmann, F., Schrott-Fischer, A., Glueckert, R., Freysinger, W., Müller, B.: High-resolution X-ray tomography of the human inner ear: synchrotron radiation-based study of nerve fiber bundles, membranes, and ganglion cells. J. Microsc. 234, 95–102 (2009)CrossRefGoogle Scholar
  2. 2.
    Schulz, G., Weitkamp, T., Zanette, I., Pfeiffer, F., Beckmann, F., David, C., Rutishauser, S., Reznikova, E., Müller, B.: High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating based phase contrast. J. R. Soc. Interface 7, 1665–1676 (2010)CrossRefGoogle Scholar
  3. 3.
    Guinier, A., Fournet, G.: Small Angle Scattering of X-Rays. Wiley, New York (1955)Google Scholar
  4. 4.
    Weitkamp, T., Diaz, A., David, C., Pfeiffer, F., Stampanoni, M., Cloetens, P., Ziegler, E.: X-ray phase imaging with a grating interferometer. Opt. Express 13, 6296–6304 (2005)CrossRefGoogle Scholar
  5. 5.
    Weitkamp, T., David, C., Kottler, C., Bunk, O., Pfeiffer, F.: Tomography with grating interferometers at low-brilliance sources. Proc. SPIE 6318, 63180S (2006)Google Scholar
  6. 6.
    Heinrich, B., Bergamaschi, A., Brönnimann, C., Dinapoli, R., Eikenberry, E.F., Jhonson, I., Kobas, M., Kraft, P., Mozzanica, A.: PILATUS: a single photon counting pixel detector for X-ray applications. Nucl. Instrum. Methods Phys. Res. A 607, 247–249 (2009)CrossRefGoogle Scholar
  7. 7.
    Bunk, O., Bech, M., Jensen, T.H., Feidenhans’l, R., Binderup, T., Menzel, A., Pfeiffer, F.: Multimodal x-ray scatter imaging. New J. Phys. 11, 123016 (2009)CrossRefGoogle Scholar
  8. 8.
    Weitkamp, T., Tafforeau, P., Boller, E., Cloetens, P., Valade, J.-P., Bernard, P., Peyrin, F., Ludwig, W., Helfen, L., Baruchel, J.: Status and evolution of the ESRF beamline ID19. AIP Conf. Proc. 1221, 33–38 (2010)CrossRefGoogle Scholar
  9. 9.
    Müller, B., Deyhle, H., Bradley, D., Farquharson, M., Schulz, G., Müller-Gerbl, M., Bunk, O.: Scanning x-ray scattering: evaluating the nanostructure of human tissues. Eur. J. Nanomed. 3, 30–33 (2010)CrossRefGoogle Scholar
  10. 10.
    Deyhle, H., Bunk, O., Müller, B.: Nanostructure of healthy and caries-affected human teeth. Nanomedicine 7, 694–701 (2011)Google Scholar
  11. 11.
    Deyhle, H., White, S.N., Bunk, O., Beckmann, F., Müller, B.: Nanostructure of the carious tooth enamel lesion. Acta Biomater. 10, 355–364 (2014)CrossRefGoogle Scholar
  12. 12.
    Gaiser, S., Deyhle, H., Bunk, O., White, S.N., Müller, B.: Understanding nano-anatomy of healthy and carious human teeth: a prerequisite for nanodentistry. Biointerphases 7, 4 (2012)CrossRefGoogle Scholar
  13. 13.
    Georgiadis, M., Guizar-Sicairos, M., Zwahlen, A., Trüssel, A.J., Bunk, O., Müller, R., Schneider, P.: 3D scanning SAXS: a novel method for the assessment of bone ultrastructure orientation. Bone 71, 42–52 (2015)CrossRefGoogle Scholar
  14. 14.
    Liebi, M., Georgiadis, M., Menzel, A., Schneider, P., Kohlbrecher, J., Bunk, O., Guizar-Sicairos, M.: Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography. Nature 527, 349–352 (2015)CrossRefGoogle Scholar
  15. 15.
    Malecki, A., Potdevin, G., Biernath, T., Eggl, E., Willer, K., Lasser, T., Maisenbacher, J., Gibmeier, J., Wanner, A., Pfeiffer, F.: X-ray tensor tomography. Europhys. Lett. 105, 38002 (2014)CrossRefGoogle Scholar
  16. 16.
    Schaff, F., Bech, M., Zaslansky, P., Jud, C., Liebi, M., Guizar-Sicairos, M., Pfeiffer, F.: Six-dimensional real and reciprocal space small-angle X-ray scattering tomography. Nature 527, 353–356 (2015)CrossRefGoogle Scholar
  17. 17.
    Mülle, B.: Biomimetics and medical implementations. In: Bar-Cohen, Y. (ed.) Biomimetics: Nature-Based Innovation. Taylor & Francis Group, Boca Raton (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Biomaterials Science Center (BMC)University of BaselBaselSwitzerland